Sonar-based Measurement of User Presence and Attention

Stephen P. Tarzia[†] Robert P. Dick[‡] Peter A. Dinda[†] Gokhan Memik[†]

[†]Northwestern University, EECS Dept.

[‡]University of Michigan, EECS Dept.

Presented at UbiComp 2009 Orlando, FL, USA October 2, 2009

http://empathicsystems.org

Abstract

- ► Novel use of laptop's speakers and mic as a sensor
- ▶ In absence of HID input, we can determine whether user is
 - 1. still present
 - 2. or gone
- ▶ No new hardware required

Presence detection

Problem definition

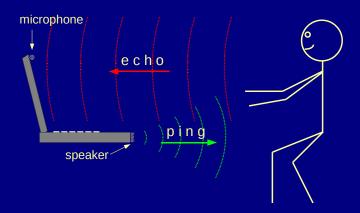
Detect whether there is a human user present at the computer.

Motivation:

- Operating systems
- ▶ Ubiquitous computing

Goals:

- Accuracy
- Responsiveness
- ► Low cost

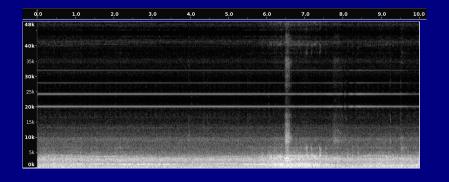

Related work

- ► Activity detection
- ► Power management
 - ► FaceOff Dalton and Ellis, HotOS'03
- ▶ Ultrasonics
 - Audio networking Madhavapeddy et al., UbiComp'03
 - ► Cricket localization Priyantha et al., MobiCom'00
 - ► WALRUS localization Borriello et al, MobiSys'05
 - BeepBeep acoustic ranging Peng et al., SenSys'07

Active sonar

Our system:


- ► laptop's speaker and mic
- ► inaudible ultrasonic tones (≥ 20 kHz)
- continuous sine wave



Hypothesis

- Users will reflect pings.
- Users are always moving, at least slightly.
- ▶ User movements will cause changes in echo intensity.
- ► Thus, a user's presence will increase echo variance.

An example recording

Echo Delta is the sum of these absolute differences.

User study goals

- ► Test hypothesis
- ► Carefully guide users through several states
- ► Mimic real usage scenarios
- ► Evaluate suitability of various microphones and speakers

Experimental setup

Active state: Typing task

Passively-engaged state: Video task

Disengaged state: Phone task

Distant state: Puzzle task

Absent state

Experiment details

- ► Twenty grad student volunteers
- ▶ 4 minutes spent on each task
- ► 50 second recordings for each task
- ► Tasks were randomly ordered

Sonar measurements (50 s recording)

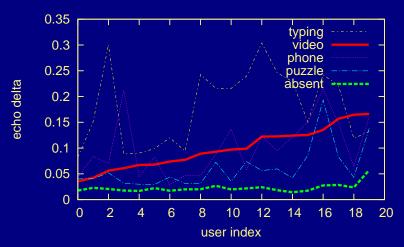


Figure: Consistent gap between video and absent states across all users

Sonar measurement ranges (10 s recordings)

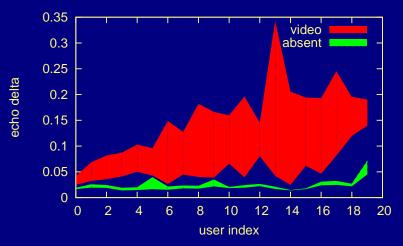


Figure: Gap remains after reducing recording length to 10 seconds

Binary state classifier

- ▶ Motivated by clear difference seen in sonar measurements
- ▶ If sonar measurement is above a certain threshold, classify as passively-engaged; otherwise absent.
- Threshold setting

$$\mathcal{T} \equiv (\Delta_e^{\textit{passive}} * (\Delta_e^{\textit{absent}})^2)^{1/3}$$

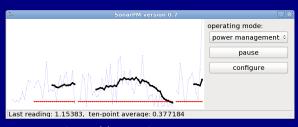
Classifier confusion matrix results

- ► Tested the binary classifier using the user study recordings (video and absent)
- ► Split recordings into 10s of training and 40s of test data
- ► Error rate less than 4%.

	Predicted state	
Actual state	passively engaged	absent
passively engaged	0.9632	0.0368
absent	0.0248	0.9752

Conclusion

- ► Hypothesis supported by experimental results
 - User presence causes an increase in sonar measurement variance.
- Binary state classification for two important states was successful.
- Low computational overhead


Current and future work

Open questions:

- ► How common is ultrasound-capable audio hardware in laptops and other electronics?
- ► How much power can be saved using fine-grained sonar-based power management?

Sonar Power Manager software is available:

- Windows and Linux
- Open-source

http://empathicsystems.org