
Making JavaScript Better By
Making It Even Slower

Maciej Swiech, Peter Dinda

Northwestern University

Empathic Systems Project

www.empathicsystems.net

1

http://www.empathicsystems.net/

What will we talk about?

• We were able to reduce energy spent on mobile
browsing, extending battery life

• In most cases, we are able to accomplish this with
little to no effect on the user

• We suggest ways to implement this effect

2

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

3

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

4

Modern Browsing

• Modern web sites rely on enabling technologies like
JavaScript

• Implementation of a Model-View-Controller

• Much correctness/efficiency research
• Google Closure Compiler

• S5 Semantics [Politz et al. DLS ‘12]

5

JavaScript

• Integral to modern website design
• Dynamic and interactive user environment

• Event-based
• Registered handlers – onClick(), onLoad(), etc

• Interpreter waits for event to occur

• Runtime
• Single-threaded

6

JavaScript: mobile

• Buggy code detrimental to user experience

• Power, energy, and battery lifetime considerations
• Transmission and interpretation significant portion of

energy spent on mobile browsing

• Amazon – 16%

• YouTube – 20%

• [Thiagarajan, N. et al. WWW ’12]

7

JavaScript: mobile

• How can we reduce energy?
• Code minification / obscuring

• Compression schemes

• Reduce transmission energy, but not interpretation
and running energy

8

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

9

Throttling

• We argue JavaScript is running faster than it needs
to be

• What if we throttle interpretation?

10

Throttling: methods

• DVFS

• Thread scheduling

• Inserting sleep()

11

Throttling

• Idea – insert ‘sleep()’ calls at key control-flow points
in code
• if, for, while, function definitions

• Easily identifiable

• Likely to be repeated

• Reduce energy while maintaining user satisfaction

12

Throttling

• “Race to the finish” computation?
• Dwell Time = time spent on a site

• Doesn’t capture event-based model

• Speed of execution ≠ dwell time
• Power savings → Energy savings

13

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐷𝑤𝑒𝑙𝑙 𝑇𝑖𝑚𝑒 ∗ 𝑃𝑜𝑤𝑒𝑟

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

14

Throttling JavaScript

• No native sleep()!
• Single-threaded event-based model

15

TameJS

• JavaScript extension compiler

• Based on Tame C++ framework [Krohn et al. USENIX
ATC ‘07]

• Extends JavaScript with 2 primitives
• await

• defer

• Designed to make event programming easier to
develop in JavaScript

16

TameJS: example

for (var i = 0; i < 5; i++) {

console.log("hello");

}

17

TameJS: example

for (var i = 0; i < 5; i++) {

console.log("hello");

}

18

hello hello hello hello hello

TameJS: example

for (var i = 0; i < 5; i++) {

setTimeout(console.log("hello"),1000);

}

19

TameJS: example

for (var i = 0; i < 5; i++) {

setTimeout(console.log("hello"),1000);

}

20

wait 1 second…

TameJS: example

for (var i = 0; i < 5; i++) {

setTimeout(console.log("hello"),1000);

}

21

wait 1 second…
hello hello hello hello hello

TameJS: example

for (var i = 0; i < 5; i++) {

await{setTimeout(defer(), 1000);}

console.log("hello");

}

22

TameJS: example

for (var i = 0; i < 5; i++) {

await{setTimeout(defer(), 1000);}

console.log("hello");

}

23

wait 1s, hello, wait 1s, hello, …

TameJS → Throttling

await{ setTimeout(defer(), time);}

• This “sleep()” causes interpreter to pause → yield

• OS can deschedule interpreter → HLT

• If CPU idle → C-STATE can be lowered

24

TameJS → Throttling

• How long to sleep?

• Tested delays of 1,2,5,10,25,100ms
• Once any sleep injected, reduction of CPU util

• Chose 1ms to cause least impact on user
satisfaction

25

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

26

JSSlow

27

Identify:
for

while

if

func

JSSlow: architecture

• Proof-of-concept HTTP proxy
• Evaluate throttling claims

• Insert between user and web site

• Based on TinyHTTP proxy
• Python

• Used in previous studies to provide satisfaction overlay
[J. Miller et al. INFOCOM ’10]

• BeautifulSoup library
• HTML AST creation

• Fast identification of <script> nodes

28

JSSlow: architecture

29

<script>

...

var i = getThing();

for (j = 0; j < 3; j++) {

do_a_thing();

}

while (j == 4) {

do_another_thing();

}

...

</script>

JSSlow: architecture

30

<script>

...

var i = getThing();

for (j = 0; j < 3; j++) {

await{setTimeout(defer(),1000);}

do_a_thing();

}

while (j == 4) {

await{setTimeout(defer(),1000);}

do_another_thing();

}

...

</script>

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

31

Evaluation: offline studies

• Top-k study
• Studied effect on most popular web sites

• Automated page-loading

• Advertising / Buggy JavaScript study
• Studied effect on advertising JavaScript

• Measured upper bound using crafted bugs

32

Offline: testbed

• Galaxy Nexus phone

• Android 4.0.4

• Monsoon power monitor
• Bypass battery

33

Offline: top-k study

• 120 most popular sites gathered from Google Ad
Planner

• Each site allowed to run for a dwell time of 60
seconds
• Allow site to load and settle

• Runs repeated with throttling enabled and disabled
in proxy

34

Offline: 5% power reduction for top-k

35

Power Savings

Power with throttled JS [W]

Po
w

er
 w

it
h

 u
n

th
ro

tt
le

d
JS

 [
W

]

Offline: advertising and bugs

• 50 JavaScript ads manually extracted from random
sample of top 120 sites

• Each ad run for 60 seconds

• Runs repeated with throttling enabled and disabled
in proxy

• Crafted infinite loop to estimate upper bound

36

Offline: ad and bug results

• 52% reduction in power during infinite loop
• Page usability restored

• Average 10% reduction in power for
advertisements

37

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

38

Evaluation: user study

• Designed a double blind user study to evaluate
effects of both real-time energy effects and user
satisfaction

• Chose first 20 users who responded to call for study

39

User Study: design

• User establishes a baseline on non-throttled phone,
familiarizing themselves with browser

• User would complete each task
• ‘low interactivity’ – read / comment on CNN, read /

comment on FaceBook

• ‘high interactivity’ – play JavaScript game of Snake

• Every 30 seconds, user prompted to rate
satisfaction

• Proxy randomly chose whether to throttle

40

User Study: testbed

• Galaxy Nexus phone

• Android 4.0.4

• Fluke i30 current clamp

• RadioShack 22-812 DMM
+ QtDMM

41

User Study: results

42

Power difference
offline

User Study: results

43

Higher Satisfaction

Power Savings

User Study: CNN – lower power

44

User Study: FaceBook – lower power

45

User Study: Snake1 – varied

461http://snake.alexthorpe.com

User Study: results

• Low interactivity
• Small change in satisfaction for CNN

• Mixed change in satisfaction for FaceBook

• Average power reduction: 3.8%

• High interactivity
• No power savings

• Very varied satisfaction

47

Evaluation: proxy limitations

• Increased download size
• TameJS transformation + runtime library

• Decreased performance
• TameJS transformation can lead to 1-2% performance loss

• Coarse-grained control

• Missed opportunities
• Non-locally sourced scripts (advertising)

• TameJS compilation errors
48

Outline

• Motivation / Background

• Key Idea – throttling

• Enabling technology (TameJS)

• JSSlow Proxy

• Offline Studies

• User Study

• Conclusions

49

Results

• By throttling JavaScript we are able to reduce
energy during mobile browsing by 3-10%
• Underestimation due to implementation

• This reduction comes at little to no cost to the end-
user for low-interactivity sites

• More controls needed for high-interactivity sites

50

Future Work: throttling

• Most of JSSlow’s limitations can be mitigated by
implementing throttling in the JavaScript engine
• Default throttle settings

• Crowdsourced database

• JavaScript APIs

• SpiderMonkey and V8
• Rudimentary implementation

51

Maciej Swiech <mswiech@u.northwestern.edu>

http://eecs.northwestern.edu/~msw978

Prescience Lab: www.presciencelab.org

Empathic Systems Project: www.empathicsystems.org

52

• Throttling reduces energy by 3-10%

• Throttling comes at little to no cost for the user

• Proxy proof-of-concept, Engine augmentation ideas

mailto:mswiech@u.northwestern.edu
http://eecs.northwestern.edu/~msw978
http://www.presciencelab.org/
http://www.empathicsystems.org/

Android interactive governor

53

JSSlow: algorithm

// create AST of the incoming html

html-copy = BeautifulSoup(incoming-html)

sleep = "await { setTimeout(defer(), g_slow); }"

// iterate over all <script..>..</script> fields

for script in html-copy:

script-copy = script

// fetch local scripts

if script.has_tag("src") && src.is_local():

script-copy = fetch(src.address)

insert-at(sleep, ["while","for","if","function"])

try:

script-copy = tame-compile(script-copy)

except:

// if compilation failed, just skip

continue

script = script-copy

return html-copy

54

