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Abstract— Stress plays a major role in physical and emotional
well-being, and is associated with several illnesses including
depression, diabetes, and other chronic diseases. College student
stress as a construct is important to detect in order to equip
students in a timely manner with stress coping strategies.
However, the lack of a passive sensing measure accepted as
a gold standard impedes real time detection and treatment
of stress. Many researchers are studying passive sensing of
stress using wrist-worn sensors; however, this effort focuses on
understanding the essential features of wrist-worn sensors in
detecting stress, and how to best induce stress in a lab setting.

Applying machine learning methods increasingly is making
it feasible to validly infer in real time through passive sensing
of physical features psychological states, such as stress. Given
strong participant adherence to wrist-worn sensors, this paper
focuses on analyzing the effect of replacing other body sensing
platforms (e.g. chest-based heart rate) with their wrist-worn
equivalent on stress prediction accuracy. Nine participants
were equipped with multiple body sensors and were asked to
wear a commercially available Android smartwatch, a custom-
designed smartwatch equipped with a Galvanic Skin Response
(GSR) sensor, a chest-based heart rate sensor, and a finger-
based commercial GSR sensor. Based on participant self-
reports, singing experiment showed greatest stress levels across
participants. This paper further analyzes features for prediction
from all sensors compared to wrist-worn only sensors. Using
statistical features on one-minute fixed-time sub-divisions and
correlation-based feature subset selection and a Random Forest
model, the system is capable of detecting stress with 88.8% F-
measure.

Index Terms— Android, smartwatch, wrist sensors, stress
detection, passive sensing, heart rate, galvanic skin response,
machine learning.

I. INTRODUCTION
Stress can be a positive force, encouraging students to

study more to learn and produce knowledge, and other
times it is harmful and may lead to psychological and
physiological diseases1. As a direct or indirect source of
many health issues, stress is inclined to lower the individual’s
life quality and contributes to increasing number of suicide
cases2. Studies show one in every four Americans exhibit
great levels of stress [14]. In a recent survey of 120 people,
we show that college students primarily feel stress from:
Homework/Projects, Grades, and Exams. Another recent

1http://www.apa.org/helpcenter/stress-body.aspx
2https://afsp.org/about-suicide/suicide-statistics/

survey shows that around 49% of students report feeling
stress on a daily basis, particularly females [15].

The StudentLife [24] project lays the groundwork for
stress and passive sensing in college students, showing the
need to study stress, and how it varies throughout the quarter,
positively correlating with sleep and conversation duration
and frequency. Recent passive sensing stress research has
shown success of combining a wrist-worn sensor with a
chest-based ECG sensor to detect stress based on models
built in-lab [19][10]. Many researchers are also designing
new devices and applying machine learning models in the
lab. However, to do so, they must start by testing in a lab
setting. Despite the increasing research on detecting stress,
it is not well understood which features are most important
in detecting subjective stress in a model generalized purely
from data collected from wrist-worn sensors. Moreover, it
is not well understood which activities successfully induce
stress on college students in a lab setting.

The ability to passively detect stress in lagged real-time
can enable interventions that help students cope with stress.
Such a mechanism can help support student feedback to
understand their stress patterns (time, frequency, and dura-
tion) and test interventions to understand and ultimately treat
college student stress.

Previous studies have shown that there are multiple phys-
iological markers that can be affected by the presence of
cognitive stress. These markers are related to heart rate, GSR,
blood pressure, and respiration rate. Since heart rate and GSR
can currently be reliably sensed passively in existing wrist-
worn wearables [6][12], this paper focuses on using these
sensors from a commercially available smartwatch. Inertial
sensors are also used to capture predictive features of stress
and also to potentially filter false alarms due to physical
activity.

This work contributes to understanding subjective stress
by:

• identifying the most successful stress induction methods
in college students;

• defining predictive features to detect subjective stress
in college students from wrist- and chest-worn sensors;
and

• defining predictive features to detect subjective stress in
college students only from wrist-worn sensors.



To this end, first, the state-of-the-art technology in stress
detection is discussed and compared to that of this work. The
following section describes system details including sensing
devices, data collection, and experimental setup. Followed by
the methodology section which explains how the system is
trained and tested, and finally, results are discussed, ending
with conclusions and opportunities for future work.

II. RELATED WORK

StressSense [13] measures stress from human voice using
a smartphone microphone, recognizing changes in speech
such as pitch range, jitter and speaking rate. This system
implements indoor-outdoor speech-based experiments, re-
porting 80% accuracy of stress prediction. One factor that
limits the use of this technology is the need for the user
to speak, limiting its usage to detecting stress in vocal
participants, failing to detect stress when people are silent
(e.g. a college student doing homework, or taking an exam).
This system is also affected by noise from the environment.

To overcome this problem, recent passive sensing tech-
niques show promise using continuous measurement of
physiological parameteres such as heart rate and galvanic
skin response (GSR). Vrijkotte et. al. [22] detects work-life
stress using wearable sensors that capture ambulatory blood
pressure, heart rate and heart rate variability. BeWell [11]
and StudentLife [24] are Android applications to assess the
stress level of the smartphone user by tracking activities that
affect physical, social and mental well-being. The relevant
data is collected by continuous measurement of smartphone
embedded sensors including the microphone, accelerometer,
and light sensor. Due to increased likelihood of participant
adherence to wearing a wrist-worn sensor (compared to
other wearables), using a wrist-worn sensor further expands
the ability to continuously sense physiological parameters,
enabling reliable passive sensing of stress.

Commercial smartwatches are currently equipped with
common sensors that detect body temperature, heart rate,
and accelerometer and gyroscope sensors, however, many
are not equipped with GSR sensing. The Embrace watch [5]
is one commercial wrist-worn sensor that measures stress,
tracks activity, and monitors sleep, but does not show time.
The Emvio [7] is slated to measure stress only by heart rate
variability, but is not available for purchase. These watches
do not target college student stress specifically, and may
benefit from expanding their feature set to detect college
student stress.

Researchers are increasingly building their own stress
detection platforms based on their own needs. Ouwerkerk et.
al. [16] develops a bracelet with built-in sensors including
GSR, accelerometer, device temperature, and ambient light
level. Hovsepian et. al. [10] creates a stress model (cStress) to
standardize every step of computational modeling including
data collection, screening, cleaning, filtering, feature compu-
tation, normalization, and model training. In this study, they
collect data from multiple body sensors, focusing on ECG
chest-based data, to test the models built in lab on models in
the field. This paper attempts to build upon this related work

by uncovering the predictive features of wrist-worn sensors
in predicting subjective stress in college students.

III. SYSTEM

The objective of this paper is to induce stress in a con-
trolled environment and identify the physiological responses
that can help accurately predict stress using features only
from wrist-worn sensor data. The particular system design, as
well as the sensors and devices used during the experiments,
capture participants’ physiological responses to stress.

A. Stress-Inducing Experiment Design

In these stress induction experiments, participants are
invited to the lab, and requested to wear sensors and perform
different tasks. None of the participants knew what tasks they
would perform until they came to the lab. Upon arrival they
wore the sensors, seated in front of a PC and were requested
to comply with the tasks displayed on the screen. They were
allowed to terminate the test anytime they felt uncomfortable,
but were not allowed to skip tasks.

Table I shows the details of tasks performed. The stress-
based tasks were randomized for each participant to mini-
mize carry-over effects. All these tasks had a fixed duration
of 4 minutes, except the ice-bucket test, where participants
were encouraged to keep their hand in ice for as long as
possible. At the end of each task, participants were asked
to rate their stress level on a scale of 1 to 5 [2] , 1 being
the lowest and 5 the highest stress they face in daily life.
No definition of stress was provided to capture subjective
stress. After they submitted their rating, a 2-minute rest
interval allowed participants to calm down and get ready
for the next task. Regular tasks such as eating, engaging in
conversation, and doing homework were interspersed with
stressful activities. Each activity is represented by S (stress)
or NS (no stress) class label. The reason for incorporating
NS tasks is to create a test environment that includes real-life
tasks which may create mild stress, and also challenges the
prediction model. We did not include confounding physical
activity-based tasks since that could be detected and filtered
from an accelerometer in future studies. Fig. 1 shows an
example flow of tasks with photos from different subjects’
tests.

B. Devices and Sensors

It has been shown that there is a relationship between
stress and skin conductivity or galvanic skin response
(GSR) [21]. This study uses a custom-built, portable wrist-
worn GSR device (WGSR) that can be seen in Fig. 2, worn
on the left wrist, next to an LG smartwatch. WGSR is based
on the Northwestern-developed NUSensor platform, which
eases the board- and software-level design and implemen-
tation of a small rechargable device that can sample data
directly from a set of sensor ICs and analog sensors at high
rates, transmit it to an iOS or Android phone via BLE, and
decode, display, and transmit the data to a smartphone. To
validate WGSR, a commercially available, but non-portable
GSR sensor was also used, namely a NeuLog by Eisco



Fig. 1: Example flow of activities in a test. Photos represent-
ing each activity are taken from real in-lab tests.

Labs [4], which we refer to as NGSR. Both NGSR and
WGSR have 10-bit ADC and 100ns resolution. Note that
NGSR is not a mobile device and must be connected to a
PC to transmit data. In future work we intend to study stress
outside of the lab environment, hence the use of WGSR.

Apart from skin response, heart rate is another indicator
of stress in the human body. Since most of the commercially
available smartwatches in the market are equipped with heart
rate and many other sensors, participants also wore an LG
Watch Urbane 2. Given the recent concern of heart-rate
accuracy from wrist-worn devices [8], however, a chest-worn
heart rate sensor, Polar H7 [17], is also used to test the
reliability of the wrist-worn sensor.

The tri-axial accelerometer and gyroscope data embedded
into the LG smartwatch are processed as well, because
people move in unique ways under stress. This data also
helps distinguish between high and low-intensity activity.

All the sensors used are shown in Figure 2. Since par-
ticipants wore the Polar H7 chest-band under clothing for
direct skin contact, the right image shows how to position
the Polar sensor on the body. The study coordinator aided
participants in wearing the other devices so that the devices
were contacting the skin and comfortable to wear (i.e not
tight or loose).

Fig. 2: LG smartwatch, custom-built smartwatch (WGSR)
and NeuLog GSR (NGSR) worn by user. The Polar H7
picture is adapted from the product website to show proper
usage.

TABLE I: Activities Included

Activity Label Description

Ice Bucket [20] S Dunk dominant hand into ice water
for as long as possible.

Singing [1] S Sing songs out loud without any
background music.

Game S Play the game ”The Case of Scary
Shadows.”

Stroop [18] S Type in the font color of text
appearing on the screen, which
reads the name of a different color.
Participants should try scoring as
many correct answers as possible
before time runs out.

Math S Answer as many arithmetic ques-
tions as possible before running out
of time.

SocCon NS Engage in light conversation with
researcher in charge.

Homework NS Do homework.

Emails NS Read, write, or reply to emails.

Eating NS Eat one of the complimentary
snack options.

C. Data Collection

WGSR transmits data to its paired Android smartphone
via Bluetooth. NGSR has its own software for logging data.
Similar to WGSR, the LG smartwatch has a corresponding
custom Android application to communicate its readings,
with the capability to transmit to a backend server. The chest-
band Polar H7 transmits its readings to an Android-based
Pulsometer RR app3. This application logs the readings in a
file and stores it in local memory. All data is collected at a
5Hz sampling rate, except the Polar H7, which samples at
1Hz. However, to synchronize with other data streams it is
upsampled to 5Hz.

An example of raw data collected from the heart rate
sensors (smartwatch and Polar H7) and the GSR sensors
(WGSR and NGSR) is shown in Figure 3. GSR readings
from both sensors do not always match one-to-one, but
capture the overall trend. The interval marked with red
arrows in Figure 3 is where the WGSR sensor provided
incorrect readings, which may be the result of loosened
probes. The fact that these misreadings begin in the Eating
activity supports this theory, because most of the participants
unintentionally want to use both hands while eating. Heart
rate readings from Polar and LG watch also show correlated
trend in data.

IV. METHODOLOGY

This section provides details of the methodology used to
predict subjective stress.

3https://play.google.com/store/apps/details?id=com.beetlesoft.pulsometer



Fig. 3: GSR and heart rate data collected from one par-
ticipant. R1 to R7 refer to rest. Other activities performed
were: Stroop, Game, Math, Eating (Eat), Singing (Sing),
Homework (HW), Emails, Social Conversation (SocCon) and
Ice. Interval marked with red arrow shows poor quality data.

A. Feature Extraction

Among 9 study participants, 7 provided reliable, complete
data. One of the other two had significant amount of sensor
readings missing and other one did not complete all assigned
tasks.

Features extracted on each time-series data stream are
described in Table II, with 110 total features. All features
are based on statistical analysis of the data across the entire
activity performed, to enable real-time and less-intensive
computations. Two approaches for feature-extraction are
used, Event-Based (EB), and Minute-Based (MB). The EB
approach assumes that the beginning and end of the task
are known, and a window surrounding the start and end of
each activity is used to calculate statistical features across the
entire window. The MB approach is designed for a lag real-
time prediction, using a window-size of one minute, with
75% overlap between windows.

TABLE II: Features Extracted from Sensors

Feature Description

Max Maximum value in the selected window

Min Minimum value in the selected window

Mean Average of values in the selected window

Median Median of values in the selected window

StDev Standard deviation of values in the selected window

Skew Symmetry of distribution of values in the window

RMS Root-mean-square of values in the selected window

Kurtosis Measure for outliers in the selected window

Quart1 Median of lower 25% of the values in the window

Quart3 Median of upper 25% of the values in the window

IRQ Difference between Quart3 and Quart1

B. Feature Selection

To avoid the problem of overfitting and to produce more
interpretable predictive models, a feature selection algorithm
is used to alleviate the effects of feature redundancy while in-
creasing predictive power. Correlation-based Feature Subset
Evaluation (CfsSubset) is used [23] to evaluate the impor-
tance of a subset of attributes by considering their individual
prediction ability and degree of redundancy between them.

C. Classification Approach

Two models are developed here. The first model is the
intended-stress model (labelled i), which is used for pre-
dicting the intended-stress outcome variable, according to
the Label column in Table I. Because stress is experienced
variably across people, a second model is developed called
the self-reported stress model (labelled s), which is used
to predict the self-reported subjective stress level. As each
individual exhibits a different stress threshold, mean of
all activities is calculated for each individual and used to
distinguish a likely stress (S) activity from a non-stress
activity (NS). For example, one participant provided a mean
rating of 2.56 for all 9 activities, so any rating below this
number is labeled as NS and anything above is labeled S.

Both intended-stress and self-reported stress models are
designed for all the sensors combined and the wrist-only
sensors, in order to understand if features held to be im-
portant when using the combined sensors transfer to the
wrist-only model. If they are both truly measuring the same
heart accurately, the features would remain consistent across
body position. Different algorithms used in prior stress-
based research were used to develop our models including
NaiveBayes, SVM, Logistic Regression, and Random Forest.
Each of these algorithms are tested both with Leave One
Subject Out Cross Validation (LOSOCV) and 10-fold Cross
Validation.

V. RESULTS
This section discusses the predictive features, performance

of stress predictive models, and the effectiveness of in-lab
stress induction.

A. Selected Features

Table III lists the features selected for each dataset. Dataset
names depend on three factors: the windows used to extract
the features (EB or MB), the type of sensor (WC: all
wrist and chest sensors; W: wrist-only sensors), and labeling
approach (i: intended-stress; s: self-reported stress). The
Features column displays the statistical features extracted.
Here, WHR refers to the wrist-worn heart-rate sensor in
the LG smartwatch, whereas CHR indicates the heart rate
sensor from the chest-worn Polar H7. Similarly, NGSR is
the GSR sensor of NeuLog, and WGSR refers to the wrist-
worn custom-built GSR. GYRY is the y-axis gyroscope value
read from LG watch.

Interestingly, CHR is not proven to be a predictive feature,
but WHR is included as such. Replacing features collected
from the wrist-worn heart rate sensor with those of the



chest-worn heart rate sensor only improves the f-measure by
1%. This finding highlights a potential problem with feature
selection algorithms, because they do not exhaustively search
all possible options, they may not capture the global optimal
set of features.

Although CfsSubset generates a subset of important fea-
tures for MB-WCs and MB-Ws models, classification per-
formed using those features results in poor accuracy (61.7%,
70%, respectively). As a result, combining CfsSubset with
a wrapper-based method [9] using the Random Forest algo-
rithm as the classifier produces more reliable results (dis-
cussed in Section V.C.2.), selecting 37 predictive features
that are predominantly selected from WHR, NGSR, WGSR,
and gyroscope (GYRX, GYRY, GYRZ) data.

TABLE III: Features Selected for Each Dataset

Dataset Features

EB-WCi NGSR mean, WHR kurtosis

EB-WCs NGSR mean, NGSR skew, WHR min,
GYRY kurtosis, WGSR irq

EB-Ws WHR min, GYRY kurtosis, WGSR irq,
WHR mean

B. Classifier and Dataset Accuracies

1) Best classifier: For both EB-WCi and EB-WCs
datasets, several classifiers were tested, including: Naive-
Bayes (NB), SVM, Logistic Regression (LR) and Random
Forest (RF). The results for EB-WCi (intended stress) were:
59.2% NB, 58.4% SVM, 57.6% LR, and 59.1% RF. The
results for EB-WCs (self-reported stress) were: 26.8% NB,
61.3% SVM, 66.1% LR, and 78.8% RF. All classifiers yield
significant improvement in F-measure for reported stress
compared to intended stress labels. This is not surprising
given that subjective stress differs from one subject to
another. This result shows the importance of a personalized
stress induction methodology. Since Random Forest outper-
forms other classifiers it is used in the remainder of our
analysis.

2) Dataset Accuracies with Random Forest Model: As
shown in Table II, features selected for EB-WCi are just
NGSR mean and WHR kurtosis, highlighting the importance
of skin conductivity and heart-rate as important indicators
of stress. When the selected NGSR feature is replaced with
the custom-built WGSR version, all evaluation metrics of the
model improve slightly both in predicting intended stress and
in self-reported stress.

Besides these two feature sets, the EB-Ws dataset has a
predictive feature set similar to EB-WCs, and when using
the features extracted from EB-WCs on EB-Ws (but using
their wrist-based counterpart), there is a negligible (1.7%)
decrease in F-measure. Also, using the features collected in
EB-Ws on EB-WCs produces similar results. This shows that
there are multiple features that could be used to distinguish
levels of stress (as seen in Figures 4 and 5). Such proximity

in the results show that wrist-only based versions of physi-
ological sensors can still provide reliable stress predictions,
even though their readings do not precisely match, as the cor-
relation between their ground truth counterparts is significant
enough to produce useful features.

Fig. 4: Accuracy of predictions of the EB-WCs dataset when
WHR min is replaced with CHR min (F-measures are 0.788
and 0.786, respectively).

Fig. 5: Accuracy of predictions of the EB-WCs dataset when
NGSR mean and NGSR skew are replaced with wrist-based
counterparts. (F-measures are 0.788 and 0.771, respectively).

Applying a wrapper-based feature selection [9] method
(with the Random Forest classifier) on the last two datasets,
MB-WCs and MB-Ws, results in 37 predictive features. The
features found predictive in the MB-WCs dataset are also
found predictive in their alternative sensor counterpart in
the MB-Ws dataset. The evaluation metrics for these two
datasets are shown in Figure 6, and outperform those of the
EB models. The C. Kappa statistics of the WC model and
W model are 0.63 and 0.67, respectively. Results therefore
support the potential to use wrist-only sensors to predict
stress in college students, with real-time stress also showing
great potential.

C. Best Stress-Inducing Activity

Although in-lab stress induction can be a challenging task,
participant self-reported stress levels show great variability
in how people respond to stress. Figure 7 shows the singing
stress test is inducing the greatest stress in college students,
followed by Math test (in the presence of someone watching).
On the opposite end of the scale, eating is shown to exhibit
the least amount of stress, which justifies why people use



Fig. 6: Accuracy of predictions of MB-WCs and MB-Ws
datasets (F-measures are 0.869 and 0.888, respectively).

food as a means of comfort [3]. This figure also shows
the accuracy of the Random Forest classifier for each task
using the MB-Ws dataset. It can be seen that accuracy of
the classifier is high for the majority of the tasks except the
singing task (64.4%), suggesting a challenge for detection of
some stressful activities.

Fig. 7: Y-axis on the left-hand side shows participant rating
scale (1-5) using a box whisker plot, and the scale on the
right-hand side shows the range of classifier accuracy, which
is shown for each task with using a red dot plot.

VI. CONCLUSION AND FUTURE WORK
Varying stress inducing experiments are performed in-

lab on 9 college students using chest-worn, finger-worn
and wrist-worn wearable devices. Both coarse-grained and
fine-grained analysis show that even though the readings of
wrist- and chest-worn heart rate sensors do not exhibit strong
cross correlation, they can be used interchangeably for stress
detection. For event-based classification, 78.8% f-measure
is achieved when NGSR mean, NGSR skew, WHR min,
GYRY kurtosis, and WGSR irq are used for prediction.
For minute-based classification, f-measure is 88.8%. The
classifier comparisons show that Random Forest is the best
performing model for the data collected in this work. Finally,
this work shows that it is possible to trigger different levels of
stress in-lab, with the singing test showing the greatest level
of subjective stress among college students. Future work
stemming from this study includes developing an accurate
personalized real-time stress detection model based solely on
wrist-worn sensors, and testing its performance in the wild
with a larger group of subjects. Since this effort is based on
a controlled lab environment, future in-the-wild studies will

validate the usability and accuracy of our sensing platform
in stress detection.
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