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ABSTRACT
We describe a technique to detect the presence of com-
puter users. This technique relies on sonar using hard-
ware that already exists on commodity laptop com-
puters and other electronic devices. It leverages the
fact that human bodies have a different effect on sound
waves than air and other objects. We conducted a user
study in which 20 volunteers used a computer equipped
with our ultrasonic sonar software. Our results show
that it is possible to detect the presence or absence of
users with near perfect accuracy after only ten seconds
of measurement. We find that this technique can differ-
entiate varied user positions and actions, opening the
possibility of future use in estimating attention level.
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INTRODUCTION
In ubiquitous computing systems, it is often advan-
tageous for distributed electronic devices to sense the
presence of roaming humans, even when they are not
directly interacting with the devices. This ability allows
such a system to provide services to users only when ap-
propriate. In traditional desktop computing, attention
information is also useful; it is already used by Oper-
ating System (OS) power management systems to save
energy by deactivating the display when the keyboard
and mouse are inactive. Security systems prevent unau-
thorized access by logging out or locking a user’s session
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after a timeout period. In both of these cases, the OS
must know whether a user is present and attentive, i.e.,
using the computer system, or absent.

We have identified five different human user attention
states among which an ideal system would distinguish,
shown in Table 1. The active state is trivially detectable
using input activity. Our ultimate goal is to distinguish
the remaining four attention states. In this initial pa-
per, however, our evaluation focuses on specific activi-
ties, as shown in the table. A given attention state may
be as associated with numerous activities.

Related Work
Activity detection is one of the fundamental research
problems in ubiquitous systems. Such systems typically
attempt to determine a human’s current task using data
from a variety of sensors such as GPS, RFID, infrared
motion detectors, accelerometers, and video cameras.
Our work differs from past work in that it uses hard-
ware that is already available in many home and office
electronic devices. Essentially, our work evaluates a new
kind of environment sensor.

In the OS community, we know of only one existing
research project that studies user attention detection:
“FaceOff” tackles the fine-grained OS power manage-
ment problem [2]. It processes images captured by a
webcam to detect whether a human is sitting in front
of the computer.

Ultrasonic sounds have such high frequency that hu-
mans cannot hear them. They have already been used
in context-aware computing for several different tasks.
Madhavapeddy et al. used ultrasonic and audible sound
as a short-range low-bandwidth wireless communica-
tion medium [4]. The Cricket localization system by
Priyantha et al. uses ultrasonic and radio beacons to
allow mobile devices to determine their location within
a building [7]. Borriello et al. built another room-level
location service similar to Cricket [1]. Peng et al. built a
ranging system for pairs of mobile devices that uses au-
dio [6]. In this work we propose using ultrasonic sound
for another task: directly sensing the user.

Active Sonar
Sonar systems emit sound “pings” and sense the result-
ing echoes. Based on the characteristics of the echoes,
a rough map of the surrounding physical space can be
derived. Sonar is used by animals, such as bats and dol-
phins, for navigation and hunting. Man-made systems
have been invented for fishermen, divers, submarine
crews, and robotics. The omnidirectional (unfocused)



User attention state Definition Activity User-study task
Active Manipulating the keyboard,

mouse, etc
Typing Replicating an on-screen document on a

laptop using a word processor
Passively engaged Reading the computer screen Video Watching a video on the laptop’s display
Disengaged Sitting in front of the computer,

but not facing it
Phone Short multiple-choice telephone survey

using telephone next to the laptop
Distant Moved away from the computer,

but is still in the room
Puzzle Pencil-and-paper word-search puzzle on

the desk beside the laptop
Absent User has left the room Absent After the participant left the room

Table 1. Proposed user attention states and each state’s associated user-study task.

and relatively insensitive microphones and speakers built
into most laptops are not ideal for building a precise
sonar system. However, our expectations for the sonar
system are modest; we only need information about the
user’s activity, not a detailed map of the room.

Audio in the 15 to 20 kHz range can be produced and
recorded by a laptop computer but is inaudible to most
adults [5]. Thus, by using these audio frequencies and
assuming the absence of children and pets that are sen-
sitive to ultrasound, we can program a sonar system
that is silent to the user. Our sonar system emits a
continuous high frequency (ultrasonic) sine wave and
records the resulting echoes using a microphone.

HYPOTHESES
What characteristics of the echoes might vary with user
activity? We make the following two conjectures: (1) The
user is a close surface that will reflect sound waves emit-
ted from the speaker. (2) The user’s presence may affect
the amount of reflection and therefore the intensity of
echoes received by the microphone.

In many scenarios the user is the only moving object
near the computer. It might therefore be helpful to lis-
ten for signs of movement in echoes; any data related to
movement is likely to be related to the physically-active
user’s behavior. In particular, motion in the environ-
ment is likely to introduce additional variance in the
echoes since the angles and positions of reflection sur-
faces will be changing. Thus, the user’s presence and
activity might affect the variance of echo intensity. Our
results, presented later, support this claim.

USER STUDY
We conducted a user study to determine how sound
echoes vary with changes in user attention state. We
were specifically interested in how echo intensities and
variances are affected. Our study protocol was reviewed
and approved by our university’s Institutional Review
Board and is described briefly in this section. We re-
cruited twenty paid volunteers from among the graduate
students in our department. During the study, partici-
pants spent four minutes working on each of four tasks.
Each task, plus absence, shown in Table 1 is associated
with one of five attention states.
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internal: Laptop’s internal microphone, located near the

touchpad

ST55: Sterling Audio ST55 large diaphragm FET con-

denser mic connected through Edirol UA25 USB

sound card

PC: Inexpensive generic PC microphone connected via

Plantronics USB DSP v4 sound card

webcam: Built-in microphone on a Logitech Quickcam 3000

pro USB webcam
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internal: The laptop’s internal speakers, located on either

side of the keyboard.

sound-
sticks:

Harman Kardon SoundSticks USB speakers that

include a subwoofer, left, and right speakers.

dell: Dell’s standard desktop computer speakers con-

nected via Plantronics USB DSP v4 sound card

null: Record without any emitted sound wave

Table 2. Audio hardware used in user study.

A secondary goal of the study was to determine which
types of speakers and microphones would be suitable
for a computer sonar system. We, therefore, experi-
mented with combinations of four microphones and four
speakers. While the users completed the tasks, a 20 kHz
sine wave was played, and recordings of the echoes were
made. For each task, sixteen recordings were made.
The four microphones recorded simultaneously. The
four minutes that each participant spent on a task was
divided into four one-minute intervals. During each in-
terval a different speaker played the sine wave. In this
way, a recording for each combination of microphone
and speaker was obtained for each user performing each
task. To eliminate temporal biases, the order of tasks
completed and speaker activations within those tasks
were randomized for each user (except that the “ab-
sent” task always occurred last, after the user had left).
The total user study duration was twenty minutes: four
minutes for each of five tasks.

Experimental Setup
Our experimental setup was modeled after an office en-
vironment. The audio equipment and laptop computer
were arranged on a large desk and the participant sat
in a rolling office chair. The study administrator was
seated at an adjacent desk throughout the study. Every-
thing, including the word puzzle clipboard was fastened



securely to the desk to ensure consistency between runs.
The telephone cord was shortened to force users to re-
main in front of the laptop while making calls. A Lenovo
T61 laptop with a 2.2 GHz Intel T7500 processor and
2 GB RAM was used. The OS was Ubuntu Linux.

Setup details are as follows. We used the audio hard-
ware listed in Table 2. The speaker volumes were set to
normal listening levels. We used the right-hand side
speakers only, for simplicity. We chose a sonar fre-
quency of 20 kHz because very few people can hear tones
at this frequency. Recording and playback audio format
was signed 16 bit PCM at 96 kHz sample rate (almost all
new laptops support these settings). The first and last
five seconds of each recording were discarded leaving a
set of fifty-second recordings for analysis.

Feature extraction
Analysis of the recordings was done after the user study
was complete. We wrote Python scripts to analyze the
18 GB of WAV files using standard digital audio signal
processing techniques. In this section we describe how
echo intensities were calculated from the recordings and
we describe a feature of these intensities, called echo
delta, which we used when explaining our results.

To calculate an estimate of the echo intensity, we use a
frequency-band filtering approach. We assume that all
of the sound energy recorded in the 20 kHz band repre-
sents sonar echos; our measurements confirm that am-
bient noise in that frequency-band was negligible. We
use Bartlett’s method (with 10 non-overlapping rectan-
gular windows and a 1024-point Fast Fourier Transform
(FFT)) to estimate the recording’s power spectrum; in
each of the ten windows, the amplitude of the Fourier
coefficient nearest 20 kHz was squared to get an energy
value and then averaged with the other nine values. As
is common in audio measurement, we scaled down the
results with a base-10 logarithm.

In our results, we use a characterization of the echo’s
variance that we call echo delta. To calculate the echo
delta of each recording we first break it into a sequence
of 100 ms windows. The echo intensity is calculated for
each of these by Bartlett’s method, as described above;
this gives us a sequence of echo intensity values e1...eN .
The echo delta ∆e is then just the average of absolute
differences in that sequence:

∆e(e1...eN ) ≡ 1
N

N−1∑
i=1

|ei+1 − ei|

Echo delta characterizes echo variances on the time
scale of a single echo intensity window, i.e. 100 ms.

RESULTS
We now quantify the effect of user state on sonar mea-
surements in our user study. Although our experiments
included three different speakers and four microphones,
for brevity, we fully present results from only one com-
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Figure 1. User study echo delta sonar measurements for
soundsticks–webcam hardware combination. Note the
clear difference between measurements of users during
video and phone activities versus the absent state.

bination: those obtained using the soundsticks speaker
and webcam microphone.

A comparison of echo delta (∆e) among different activ-
ities is compelling. Figure 1A shows ∆e for each study
participant, in each of the five attention states. There is
a clear trend of increasing ∆e when moving from absent
to more engaged user states. The exact ordering of the
middle states (video and phone in particular) varies be-
tween users, but all for all users we observe an increase
in ∆e with their presence in any of the four attention
states.

To test the potential responsiveness of our sonar sys-
tem, we simulated a reduction in the recording time
window by splitting each fifty-second recording into five
10-second windows. Figure 1B shows the range of ∆e

values calculated in these smaller windows for a repre-
sentative pair of states. We can see that, as compared
to Figure 1A, the gap between the video and absent
states is narrowed, but the two still do not intersect.
This demonstrates a tradeoff between time window size
and state identification accuracy.

In both plots of Figure 1, there is a clear difference be-
tween users who are absent and those who are present
but not interacting directly with the machine. Com-
bined with traditional Human Input Device (HID) mon-
itoring, the proposed sonar approach makes it possible
to differentiate between interactive users, present but
non-interactive users, and absent users.

Similar, but weaker, results were obtained from several
other microphone and speaker combinations. For power
management, distinguishing between the passively en-
gaged (video watching) and absent states is critical. Ta-
ble 3 summarizes how well each hardware combinations
distinguished between the video and absent states; suc-
cess varies but does not seem to depend on hardware



Speaker Microphone
internal ST55 PC webcam

internal 1.28 1.99 1.01 1.74
soundsticks 2.85 3.07 1.40 4.53

dell 2.66 7.55 1.86 2.36
null 1.24 1.16 0.97 1.35

Table 3. Ratios of ∆e measurements for video activity
over absent activity averaged across all users. Speaker
and microphone combinations with higher ratios are
likely capable of better distinction between these two
representative activities.

Actual state Predicted state
passively engaged absent

passively engaged 0.9632 0.0368
absent 0.0248 0.9752

Table 4. Confusion matrix for binary presence classifier
using 10 s of training and 40 s of test recordings.

cost. It is particularly noteworthy that the webcam’s
relatively basic microphone was a top performer. We
suggest that microphone and speaker positioning and
omission of high-frequency noise-filtering circuitry are
the most important factors for good sonar performance.

Processing overhead for sonar is negligible. As an in-
dication, the analysis runtime for a fifty-second sam-
ple was only 1.6 s on our study laptop. Therefore, a
real-time-processing implementation would add a load
of about 3% to one of the CPU cores. The energy over-
head of activating the audio hardware is negligible com-
pared to display or CPU energy.

STATE CLASSIFIER
Encouraged by the results shown in Figure 1B, we built
a binary state classifier to automatically distinguish be-
tween passively engaged (video) and absent states. We
use a very simple threshold-based classification scheme.
Analyzing the training data gives an average echo delta
∆e for the two states: ∆passive

e and ∆absent
e . We choose

a threshold T between the two values using a weighted
geometric mean: T ≡ (∆passive

e ∗(∆absent
e )2)1/3. To clas-

sify the test data, we simply compare its ∆e to T . If it
is greater than or equal to T we classify it as passively
engaged, otherwise absent.

Table 4 shows a confusion matrix for the binary state
classifier on the user study data. The fifty second record-
ings from the passively engaged and absent states were
broken into ten second windows as in Figure 1B. For
each user, one passively engaged window and one ab-
sent window were used as training. Classification was
repeated using every pair of absent and passively en-
gaged windows as training. False positive and false
negative rates were both below 4%. After increasing
the length of the training data window to 25 s, classifi-
cation of the remaining 25 s window became perfect.

Note that distinguishing between the four attentive states
is much more difficult than the above binary classi-
fication. This is evident in the reordering of states
among different uses seen in Figure 1A. For example,
it is not clear that distinction between video and phone
activities is possible, but this was expected since users’
behaviors and postures for these activities are varied.
Nonetheless, by also monitoring HID events, we can
clearly distinguish between three states: active, pas-
sively engaged, and absent.

CONCLUSION AND FUTURE WORK
The experimental results support the hypothesis that
the user’s presence indeed causes changes in echo in-
tensity. More generally, we have demonstrated that
sonar implemented using commodity computer hard-
ware can measure useful information with low compu-
tational burden. Our user study was performed on a
laptop computer and used traditional desktop comput-
ing applications. However, any device with a speaker,
microphone, and a moderate amount of computational
power should be able to use sonar; this includes cellular
phones, PDAs, kiosks, and more.

There is still some work to be done in developing a
practical sonar attention detection system. Preliminary
experiments have shown that our sonar system works
on several different laptop models using their built-in
hardware. Our research group is already working on
implementing effective sonar-based fine-grained power
management in the OS.
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