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ABSTRACT 
 

Holistic Computer Architectures based on Application, User, and 

Process Characteristics 

Arindam Mallik 
 

As we move into deeper sub-micron technologies, the complexity of pushing 

the circuit performance further is becoming an important obstacle. To achieve 

better performance, there is an increasing need for collaboration of higher level 

(e.g. microarchitecture-level) and circuit level optimizations. Traditionally for a 

computer system, applications lie at the top of the whole spectrum. Previously, 

researchers have looked into application characteristics to optimize the 

performance of the system. The ever-increasing need for improvement in system 

performance and power utilization led me to believe that we need to look beyond 

the application level to utilize the system resources more intelligently. Note that, 

the primary objective of a computing system is to satisfy the user’s expectations. 

Previous researchers have worked into user satisfaction while interacting with a 

system. But their objective was to dynamically optimize the operating system 

behavior to satisfy the user. We believe that including individual user’s preferences 

to optimize system hardware utilization would lead to better performance and 

power. The results presented in this work support this hypothesis. Additionally, 

analysis of the materials that lies at the lowermost end of the system spectrum 
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opens up a number of opportunities to optimize the system performance. Every 

individual piece of hardware possesses unique properties even after going through 

the same manufacturing technology.  Therefore, the “one-size-fits-all” approach of 

current DVFS schemes is suboptimal in the presence of process variations. We 

have proposed architectural optimization based on process characteristics of 

individual CPU. Circuit designers typically consider the worst case scenario to 

predict the default voltage properties of a processor chip. The hard constraint of 

reliability has created a gap between the default value and the threshold where a 

circuit can work flawlessly. We have shown that treating the correctness as an 

objective can improve the system performance with noted reductions in power 

consumption. The results obtained from these research works have led us to 

propose the idea of the “holistic architecture”. 
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CHAPTER 1  

INTRODUCTION TO HOLISTIC ARCHITECTURE  

Computer architecture is the science and art of selecting and 

interconnecting hardware components to create computers that meet functional 

performance and cost goals. In computer engineering, it is the conceptual design 

and fundamental operational structure of a computer system. Computer 

architecture is a blueprint and functional description of requirements (especially 

speeds and interconnections) and design implementations for the various parts of a 

computer focusing largely on the way by which the central processing unit (CPU) 

performs internally and accesses addresses in memory. 

The exact form of a computer system depends on the constraints and goals 

for which it was optimized. Computer architectures usually trade off standards, 

cost, memory capacity, latency and throughput. Sometimes other considerations, 

such as features, size, weight, reliability, expandability and power consumption are 

factors as well. 

The most common optimization scheme carefully chooses the bottleneck 

that most reduces the computer's speed. Ideally, the cost is allocated 
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proportionally to assure that the data rate is nearly the same for all parts of the 

computer, with the most costly part being the slowest. This is how skillful 

commercial integrators optimize personal computers. 

1.1. Motivation for a holistic architecture 
Effectively, computer architecture serves as an interface between technology 

trends and marketplace demands. It delivers a computing system optimized as per 

the needs of the industry a.k.a. the users. Over the years, the optimizations 

objectives have been changed based on the innovations in the field of IC 

technology. During the 80’s, area optimization was the main research objective for 

both academic and industrial researchers [1, 2]. As a result, innovations in 

computer architecture resulted in chips optimized for area. Over the 90’s, power 

has been the key bottleneck for state of the art technologies [3, 4]. Subsequently, 

architectures proposed over that decade have been primarily focused towards low 

power solutions. As we moved into the new century, reliability has been detected 

as one of the primary bottlenecks for improving system performance [5-8]. As a 

result, we observe a trend towards reliability-aware architectures in the last few 

years. Hence, the design challenges in computer architecture has mutated over 

time. The computer architects constantly explore new ways to satisfy the market 

demand.  

The innovations in computer architecture and progress of Silicon 

manufacturing technology are closely inter-related [9]. Constant improvements in 

CMOS technology since the 70’s has helped the computer architects to come up 
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with faster, denser, cooler and cheaper computing systems. However, we have 

reached an important juncture of technological innovation history where 

traditional architectural innovations are facing an inevitable halt due to inherent 

changes in the manufacturing technology. In this dissertation, we have proposed 

additional abstraction layers that can result in system architecture that is not 

possible otherwise.  

Traditionally, a computer system is usually represented as consisting of five 

abstraction levels: hardware, firmware, assembler, operating system and 

applications [10]. Figure 1.1 presents the organization of abstraction layers in 

traditional computer architecture. 

 
Figure 1.1. Abstraction levels in traditional computer architecture 

As we move into deeper sub-micron technologies, the complexity of pushing 

the circuit performance further is becoming an important obstacle [11, 12]. To 

achieve better performance, there is an increasing need for collaboration of higher 
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level (e.g. microarchitecture-level) and circuit level optimizations [13, 14]. 

Traditionally for a computer system, applications lie at the top of the whole 

spectrum [10]. Previously, researchers have looked into application characteristics 

to optimize the performance of the system [15, 16]. The ever-increasing need for 

improvement in system performance and power utilization led me to believe that 

we need to look beyond the application level to utilize the system resources more 

intelligently. My research questions this fundamental definition about computer 

system. We propose a holistic computer architecture that considers two new layers 

lying at two extreme ends of the current set of abstraction levels – users and 

materials. Users lie at the top of the abstraction levels interacting directly with the 

applications. On the other hand, due to process variation every individual 

processor shows a variation from the default behavior specified by the processor 

vendor. Figure 1.2 summarizes the modified organization of newer abstraction 

levels. As this system architecture optimizes the system performance utilizing 

characteristics of the user, applications and materials in a holistic manner, we term 

it as ‘holistic architecture’.   
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Figure 1.2. Abstraction levels in holistic computer architecture. 

Note that, the primary objective of a computing system is to satisfy the 

user’s expectations. Previous researchers have worked into user satisfaction while 

interacting with a system[17, 18]. But their objective was to dynamically optimize 

the operating system behavior to satisfy the user. We believe that including 

individual user’s preferences to optimize system hardware utilization would lead to 

better performance and power. The results presented in this dissertation support 

this hypothesis. Additionally, analysis of the materials that lies at the lowermost 

end of the system spectrum opens up a number of opportunities to optimize the 

system performance. Every individual piece of hardware possesses unique 

properties even after going through the same manufacturing technology. Circuit 

designers typically consider the worst case scenario to predict the default voltage 

users 

materials
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properties of a processor chip. The hard constraint of reliability has created a gap 

between the default value and the threshold where a circuit can work flawlessly. 

We have shown that treating the correctness as an objective can improve the 

system performance with noted reductions in power consumption. The rest of the 

chapter summarizes major contribution of this dissertation. 

1.2. Correctness-aware Application Adaptive Execution 
We have looked into the trade-off analysis between reliability of a processor 

and its performance [19-21]. This research was aimed towards the development of a 

new programming model for network processors that would act as a bridge 

between the circuit designers and the computer architects. My work has 

questioned the traditional assumption about reliability and proposed an analysis 

which has been proven to effective in improving the system performance. 

Traditionally, the circuit designers make sure of the fact that the designed 

chip should work at the worst case scenario. We have questioned this basic 

assumption about reliability. The reliability of the system has been compromised 

to gain in terms of performance. Please note that, while loosening the strict 

constraint on reliability, we have made sure that the system should not crash. We 

proposed the design and utilization of clumsy packet processors. We introduced a 

realistic model that determines the probability of a fault for a given cycle time of a 

cache and show that the delay of the cache and the energy consumed by the cache 

can be reduced significantly without incurring a large penalty on faulty behavior. 

Using simulation, we investigated an optimal point for trading off the reliability 
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for reducing cycle time of the data cache in a representative architecture. 

Moreover, a scheme is implemented to dynamically adjust the operation frequency 

of the data cache to achieve the desired objective (e.g., reduced energy). 

1.3. Task Allocation based on statistical variation 
We have proposed a task allocation scheme [22] that utilizes the probability 

distribution of the execution times of different modules in the networking 

applications. The task allocation scheme utilized the modular nature of networking 

applications. The goal for the research is to minimize the effects of execution time 

variation. Variation in execution time is an inherent property of processing. The 

proposed scheme can estimate this variation for different parts of the code and 

perform the task allocation accordingly. Results reveal several important 

characteristics of the proposed schemes. First, they show that the base task 

distribution scheme achieves high levels of scalability. In addition, the extended 

processing time and replication scheme help to improve the performance.  

1.4. User-Experience Driven Optimizations 
To explore the role played by the human factor in computer architectures, 

individual user’s preferences over the system performance is analyzed during 

execution of different applications. A double blinded user study reveals that 

personal preferences vary greatly among users (and that a user’s preferences vary 

dynamically during application run-time) [23, 24]. Existing Dynamic Voltage and 

Frequency Scaling (DVFS) techniques in high-performance processors select an 

operating point (CPU frequency and voltage) based on the utilization of the 
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processor. While this approach integrates OS-level control, such control is 

pessimistic about the user. Indeed, it ignores the user, assuming that CPU 

utilization is a sufficient proxy. A high CPU utilization leads to a high frequency 

and high voltage, regardless of the user’s satisfaction or expectation of 

performance.  

To remedy this limitation, we have developed User Driven Frequency 

Scaling (UDFS) that dynamically adapts CPU frequency based upon direct user 

feedback – as opposed to tracking CPU utilization, as is done by current methods. 

This dynamic power management scheme automatically adapts to different users 

and applications. UDFS effectively employs user feedback to customize processor 

frequency to the individual user. This typically leads to significant power savings 

compared to existing dynamic frequency schemes that rely only on CPU utilization 

as feedback. The amount of feedback from the user is reasonable, and declines 

quickly over time as an application or set of applications is used.  Hence, it can 

reduce power consumption while still achieving high user satisfaction.  

1.5. User-Perceived Performance Evaluation  
Any architectural optimization (performance, power, reliability, security, 

etc.) ultimately aims to satisfy the user. The success of such an optimization relies 

upon the accuracy of its performance metrics as proxies for user satisfaction. 

Typically, such metrics are derived from low-level knowledge such as instruction 

throughput, hardware utilization, or operating system calls even though this 

knowledge is usually hidden from the user. We propose to derive these metrics not 
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from information that is “close to metal” and hidden from the user but rather with 

information that is “close to flesh” and apparent to the user. We describe and 

evaluate PICSEL, a dynamic voltage and frequency scaling (DVFS) technique 

that uses measurements of variations in the rate of change of a computer’s 

displayed screen to estimate user-perceived performance. The adaptive algorithms, 

one conservative and one aggressive, use these estimates to dramatically reduce 

operating frequencies and voltages for interactive applications while maintaining 

performance at a satisfactory level for the user. This is a collaborative project 

whose results have been shared by myself, and a fellow graduate student, Jack 

Cosgrove. My objective during this research was to explore the microarchitectural 

innovations involved in user-aware computing. Jack was primarily involved with 

the architecture of the display device of a system.  

1.6. Process-aware Voltage Setting 
Existing DVFS techniques are pessimistic about the CPU. They assume 

worst-case manufacturing process variation and operating temperature by basing 

their policies on loose worst-case bounds given by the processor manufacturer. 

However, as the manufacturing technologies are getting smaller, this conservative 

assumption becomes an important bottleneck. As transistors are reduced in size, it 

becomes harder to control variations in device parameters such as channel length, 

gate width, oxide thickness, and device threshold voltage. Therefore, the “one-size-

fits-all” approach of current DVFS schemes is suboptimal in the presence of 

process variations. 
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We have developed a new power management technique, Process-Driven 

Voltage Scaling (PDVS). It creates a custom mapping from frequency and 

temperature to the minimum voltage needed for stability. It adapts to process 

variation, permitting processors to operate at their lowest stable voltages. This 

mapping is then used online to choose the operating voltage by taking into account 

the current operating temperature and frequency. 

1.7. Dissertation Overview 
The remainder of this dissertation is as follows. In CHAPTER 2, we present 

an analytical model that determines the probability of a fault in a circuit element 

for a given cycle time. Furthermore, we develop a framework to analyze and 

quantify the effect of hardware faults on networking applications. CHAPTER 3 

discusses a novel clumsy processing environment where the hard reliability 

constraints are unleashed to gain in terms of system performance and power. The 

modular nature of networking applications and intelligent task allocation based on 

such properties are discussed in later part of CHAPTER 3. CHAPTER 4 

demonstrates how direct user feedback can optimize a system’s performance. 

Additionally we have shown how power management schemes can be benefited by 

customizing a CPU based on process characteristics.  The evaluation of user-

perceived performance and its utilization in a smart power management scheme is 

discussed in CHAPTER 5. Overall contributions of the dissertation are 

summarized in CHAPTER 6.    
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CHAPTER 2 

APPLICATION-LEVEL ERROR MEASUREMENTS FOR 
APPLICATION SPECIFIC PROCESSORS 

There is an inherent possibility of fault occurrence in any system. The 

sources for these faults can be different - they may arise from adverse 

environmental conditions [25], physical hardware defects,  electronic noise, 

incorrect device utilization, or logical design flaws [26]. In addition, modern 

processors are advocating for aggressive scaling of the supply voltage (Vdd) and use 

smaller manufacturing technologies. This will increase the probability of fault 

occurrence. Increasing clock rate and the use of flip-chip packaging are expected to 

have adverse effects. Moreover, even if the probability of faults for a single 

transistor can be kept constant, the probability of faults in a processor will 

increase in parallel with the number of transistors on a chip. While it is critical to 

avoid these faults with careful circuit design and packaging, they can still occur 

and need to be addressed. 

The effect an error has on a system is largely dependent on the hardware 

application. In most cases, omitting errors is not an option, i.e., the processor 

should be designed to capture and eliminate faults. This is the inherent nature of 
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the user expectation - a desktop processor or server is expected to work 

continuously for days or weeks without losing any data. In such cases, hardware 

faults are not acceptable. However, for other domains—such as networking and 

media applications—a certain level of error is acceptable, and the integrity of the 

system’s behavior can be maintained despite potential faults. This is also related to 

the properties of the systems: networking software/systems are implemented with 

the assumption that the hardware can fail (e.g., routers can drop packets). 

Therefore, faults at a certain level are acceptable for such processors. In our work, 

we present a methodology to classify and measure the effect of hardware errors on 

networking applications. 

Under the presence of faults, even if the system seems to be behaving 

correctly from outside, its operation may be affected. As a result, the system will 

operate differently depending on what kind of data becomes corrupted. For 

instance, in the presence of electronic noise, a single piece of transient data may 

get corrupted. This affects circuit behavior only momentarily. On the other hand, 

a static data element might be damaged—such as a lookup table, which is used for 

every packet operation that is processed by the system. This would affect the 

system for a longer period of time. Additionally, recovering from such errors is 

intuitively more difficult. 

In this chapter, we highlight the need for application-level characterization 

of hardware faults. Particularly, we measure the susceptibility of Network 

Processors (NPs) to faults and their resulting behavior. Several applications from 



 
 

27 

 

the NetBench benchmarking suite [27] are studied and error metrics for each of 

these applications have been defined.  

We start with building an analytical model that relates fault probability in 

a circuit element with the clock frequency. It is followed by a study where we 

introduce cache faults based on the analytical model and measure their effect on 

these applications. NetBench suite consists of a variety of applications that can be 

used to simulate a range of network processors’ functions. Among these are 

routing, encryption, and packet filtering, all of which exhibit different behavior in 

the presence of faults. 

We have examined and classified different kinds of errors that may occur in 

a network system. One type is marked as a volatile error, i.e., errors affecting data 

only temporarily. The other type is a nonvolatile error, i.e., errors affecting a static 

data structure.  

We have analyzed the effects of errors on network applications. Our goal is 

to define data segments of these applications that can be used to measure their 

error behavior. Particularly, we study several networking applications and define 

error metrics for each of them. Then, we perform a study where we introduce 

cache faults and measure their effect on these applications. Specifically, our 

contributions in this dissertation are: 

• We find a realistic model that determines the probability of a fault for a 

given cycle time of a cache and show that the delay of the cache and the 
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energy consumed by the cache can be reduced significantly without incurring a 

large penalty on faulty behavior,  

• We classify errors in network applications depending on the extent of their 

effect on applications,  

• We define several data structures to measure the extent of effect of errors in 

network applications,  

• We simulate hardware faults and record the corresponding behavior of 

different applications. 

2.1. Analytical Model of Error Probability  
Injection of noise into a circuit node causes a signal deviation at that node. 

This signal deviation will affect the operation of the circuit or circuit block driven 

by the victim net. A functional failure is possible when induced noise is propagated 

and wrongly evaluated at the primary output. The parameters that determine if 

there will be a logic error are (i) the amplitude and the duration of the noise pulse, 

(ii) the type of the victim node and the circuit connected to the victim node, and 

(iii) the signal condition on the affected node. It is important to note that with 

increasing clock frequencies, a circuit node may suffer from reduced voltage swing, 

since there is not enough time to fully charge or discharge the load capacitance. Cfs 

in Figure 9 is the clock cycle time required to obtain the full voltage swing (Vfs) 

from zero to Vdd. Note that the supply voltage is kept constant at Vdd. 
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Figure 2.1. Voltage at a circuit node at two different frequencies 

 

 

 

 

 

Figure 2.2. Decrease of voltage swing with increase of frequency 

Figure 2.1 illustrates the decrease of voltage swing (Vs) with the decrease of 

clock cycle time (C). The clock cycle time and the voltage swing are normalized 

against the clock cycle at full swing (Cfs) and the full swing voltage (Vfs), 

respectively. The relative voltage swing is defined as Vsr = Vs/Vfs and the relative 

cycle time Cr = C/Cfs. If the voltage swing changes, all the signals become faster 

by the same ratio independent of the capacitive load at a circuit node. Note that 

the change of voltage swing slows down at longer clock cycle time. This shape 

correctly maps the change of actual signals on-chip with time. Any signal at a 

at Cfsat 0.3Cfs
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circuit node rises quickly at the beginning and as the signal reaches close to the 

full swing value it takes longer time for a certain change. The curve in Figure 2.2 

has been produced by simulating a chain of gates driven by an inverter at different 

frequencies with constant supply voltage Vdd.   

 

 

 

 

Figure 2.3. A simple D Flip-Flop 

 

 

 

 

 

 

Figure 2.4. Noise immunity curves of a D flip-flop at various voltage swings 

With a reduced signal level, a circuit node is more likely to suffer from logic 

failure due to a certain level of noise. Therefore, increasing frequency leads to 

higher probability of logic failure at a circuit node due to reduced voltage swing. 

The main advantage of static logic over dynamic logic is its robustness under the 
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influence of noise. But static logic may suffer from logic failure if there is a 

feedback loop. A static D flip-flop (as in Figure 2.3), which is common in registers, 

has a feedback loop that cannot recover from noise-induced errors. In these types 

of circuits there are three possible points where noise can be injected: the input, 

the clock and the feedback loop. The feedback loop is the most sensitive to noise. 

Even a small noise pulse on the feedback loop when the clock is falling or inactive 

will be propagated repeatedly through the loop and may ultimately destroy the 

logic information stored in the flip-flop. A set of noise immunity curves for the D 

flip-flop in Figure 2.3 is presented in Figure 2.4, which plots the relative noise 

duration (Dr) against the relative noise amplitude (Ar) at various voltage swings. 

Noise pulses of various amplitudes and durations have been injected into the 

feedback loop of a D flip-flop at different voltage swings, while keeping Vdd 

constant. SPICE simulations were used to determine the set of noise amplitudes 

and durations that cause a logic failure for different voltage swing levels. The area 

above each curve in Figure 12 represents the amplitudes and durations of a noise 

pulse that can cause logic failure. Hence, the lower the voltage swing the larger the 

area of noise amplitudes and durations that can cause an error. The relative noise 

amplitude is defined as Ar = A/Vfs, where A is the amplitude of the noise pulse, 

and the relative duration of noise Dr = D/Cfs, where D is the duration of the noise 

pulse. The highest curve is for the full voltage swing Vfs (swing from zero to Vdd). 

The lower curves illustrate noise immunity at voltage swings smaller than the full 

swing. It is important to note that the noise amplitudes and durations are not 
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equally probable. The probability of smaller noise amplitudes and noise durations 

are higher than larger amplitude pulses with longer duration.  

 
Figure 2.5. Noise amplitude at various switching combination of neighboring lines 

of a victim line 

Consider a victim line, which has n neighbors significantly coupling to it. 

For noise injection into the victim line the total number of switching combinations 

of the neighboring lines is 22n. Only one switching combination results in the 

worst-case noise amplitude, which occurs when all the neighboring lines switch in 

the same direction. However, the number of cases where the effects of most of the 

neighboring lines cancel each other resulting in small amplitude of noise is large. 

We have found the number of switching cases between these two limiting cases, 

which result in a certain noise amplitude range. The results are plotted in Figure 

2.5. This distribution can be approximated by an exponential as in (2.1). 

Number of cases = 
AKeK 21

−
 (2.1) 

(1)

number of cases

0.05*22n 
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The exact constants K1 and K2 depend on the number of lines (n) coupling 

to the victim line. For large n (greater than 16) this curve saturates to continuous 

probability distribution of the form  

rAerAP 8.28*8.28)( −=   

where    ∞<< rA0  

(2.2) 

10)( =rDP   for 1.00 << rD  

0)( =rDP   for rD≤1.0  

(2.3) 

The probability distribution of noise duration can be given by (2.3). The 

reason why Dr is uniformly distributed between 0 and 0.1 is that this is the range 

of rise time on chip as a ratio of the cycle time. Note that the noise duration is 

limited by these rise times, since noise occurs due to capacitive and/or inductive 

coupling of switching line to a victim line.  

Once an aggressor signal settles, the noise pulse ends. Using equation (2.2) 

and (2.3), the probabilities (PE) of logic failure for a D flip-flop at different 

voltage swings have been obtained by the integration of the probabilities of noise 

pulse above each curve of Figure 2.6. Figure 2.6 plots the probabilities of logic 

failure against the relative voltage swings (Vrs). The probability number at full 

voltage swing are consistent with industrial and test data [28].  
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Figure 2.6. Probability of error at different cycle time 

 

 

 

 

 

Figure 2.7. Probability of error at various voltage swings 

The probability of error versus cycle time in Figure 2.7 has been obtained 

by the voltage swing variable from the two relations: cycle time versus voltage 

swing (Figure 2.2) and probability of error versus voltage swing (Figure 2.6). The 

relative cycle time Cr is always less than 1 for lower voltage swings. Similarly we 

can define relative frequency Fr = f/ffs = 1/Cr, where f is the frequency and ffs is 

the frequency at full voltage swing. PE is a single bit probability of error and is a 
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function of how fast a circuit is driven by allowing the voltage swing to decrease. 

The formula below shows the relation between PE and Cr and Fr.  

6

2

*710*2
2*6

1

*710*2
rF

erCeEP −=−=  
(2.4) 

These formulae have been found by curve fitting for the data of the above 

curves. The curves in Figure 2.7, showing the data and the curve fitted formula, 

illustrate the accuracy of the formula. Note that if the circuit is pushed enough not 

to allow any voltage swing, the error probability will be 1. However, the circuit is 

never pushed to these limits. Note that, this particular fault model is applicable for 

a specific circuit element, register file in current work. The other parts of the 

circuit won’t follow the same fault model. However, using similar procedure, it is 

possible to come up with accurate fault models for other parts of the processor. In 

our earlier studies we have developed a fault model which predicts the fault 

occurrence probability in the data cache [19].   

The overclocking of the data cache can be implemented either statically or 

dynamically. For static implementation, the clock rate would be decided at the 

design time. This will be performed by setting the clock period higher than the 

estimated delay. This scheme won’t require a separate clock for the register file. 

Dynamic implementation, on the other hand, would adjust the clock of the system 

to a higher (lower) value as the amount of error is below (above) a predetermined 
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threshold value. However, this dynamic adjustment has a high hardware overhead. 

Hence, in our work we utilize a static overclocking scheme. 

2.2. Sources of Errors 
An important trend driving microprocessor performance has been scaling of 

device sizes. Device scaling is the reduction in feature sizes and voltage levels of 

basic devices on the microprocessor. Aggressive scaling results in escalated power 

density and processor temperature,  increasing the probability of faults [29]. 

Lowering the supply voltage in a microprocessor makes it more susceptible 

to noise. With a reduced signal level, a circuit node is more likely to suffer from 

logic failure due to a certain level of noise. Therefore, increasing frequency leads to 

higher probability of logic failure at a circuit node due to reduced voltage swing. In 

high frequency circuits, the analysis of errors due to logic failure has become an 

important research area [30]. 

Another consequence of the technology scaling is the smaller supply 

voltages and reduced capacitive values of the circuit nodes. This has raised 

reliability concerns due to the increased susceptibility to soft errors. Soft errors or 

transient errors are circuit errors caused by excess charge carriers induced 

primarily by external radiations, such as alpha particles and high energy neutrons 

[31-33]. While these errors cause an upset event, the circuit itself is not damaged. 

In different memory designs, these errors can cause a particular node to charge or 
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discharge and thus cause a bit flip. This is particularly true for SRAM cells used in 

caches. 

Although designers aim to prevent all hardware faults while designing a 

system, faults can still occur due to external factors. Hence, fault tolerance has 

traditionally been an essential field of study and is becoming even more important 

for high-performance processors.  

2.3. Error Classification 
There are different types of error that may occur in a network system and 

their effects on the applications vary. An error can be classified as a volatile error 

if it affects the application in a local manner, e.g., an incorrectly received network 

packet or corruption of a temporary value. In general, these types of errors are 

likely to affect a limited amount of data and will not noticeably affect performance 

and/or application output provided that the error does not continually reoccur. 

While processing a networking application, we can pay less attention to volatile 

errors whose occurrence is limited to very few packets.  

The other type of error is the nonvolatile errors, which affect the 

application more seriously. Such errors generally result due to the changes of static 

data structures, e.g., the routing table used in a NAT application. This type of 

error will have a permanent effect on the system. Since the data structures that 

are generated in the control plane are used for the processing of each packet, a 

fault during the execution of the control plane tasks may corrupt many 
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calculations over time before it is corrected. Hence, the effect of nonvolatile errors 

is likely to be more severe and measures should be taken to detect and prevent 

them. 

It must be noted that the user makes an assumption about the completion 

of the application even if the fault probability is high. In reality, on the other 

hand, execution of an erroneous code diminishes the guarantee of completion. As 

the code may read erroneous data, it may turn into an infinite loop or may try to 

get access to some non-existent data during execution. Such events would cause 

the system to crash. This is a possible outcome for each of the applications we are 

investigating and is of interest to us for measuring the effects of faults. We classify 

such an error, which prevents the program from continuing its execution, as a fatal 

error. In case of a fatal error, the integrity of the systems is disrupted. Hence, we 

give special importance to fatal errors. In Section 2.7.3, we record the probability 

of a fatal error for different fault rates in the applications and report them 

separately. 

2.4. Applications and Error Metrics  
In this section, we discuss the networking applications studied in this 

project and present the data structures used to measure application errors for each 

benchmark program. We selected seven applications from the NetBench [27] suite. 

The applications are listed in Table 1. NetBench is a benchmarking suite designed 

for NPs. It contains applications representing level 3 tasks (e.g. route) as well as 

higher-level programs (e.g. MD5).  
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For each network application, important data structures and output of key 

function units are identified. Our goal is to make a comparison of these data values 

between the correct execution and a faulty execution. Using simulation results, we 

can calculate the statistical probability of an error to happen in the application. 

We can notice that a part of these data structures has more impact on the overall 

output than others (e.g. a routing table error is more important than an error in 

the ttl value calculation). 

In this analysis, we simply list the structures that are important in the 

execution. These structures help us to scan the state of the application while it is 

executing. We have marked the Error Keys. We measure the effect of cache faults 

on these structures as discussed in Section 2.7.1.  

In the following, we list the selected application followed by the application-

level error metric used to measure the effects of faults. 

CRC: The CRC-32 checksum calculates a checksum based on a cyclic 

redundancy check as described in ISO 3309 [34]. CRC-32 is used in Ethernet and 

ATM Adaptation Layer 5 (AAL-5) checksum calculation. The code is available in 

the public domain [35]. The errors are measured using two data structures: the crc 

table and the crc accumulator value calculated for each packet. Note that the 

errors in the crc table are more important as they would affect multiple packets 

during the processing. Any error on the accumulator calculation part would 

concern only one packet.  
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TL: TL is the table lookup routine common to all routing processes. We 

have used radix-tree routing table, which was used in several UNIX systems. The 

code segment is from the FreeBSD operating system [36]. The error metrics in the 

TL application are: the radix tree nodes traversed and the RouteTable entry for 

each packet.  

Table 2-A. NetBench Applications and Their Properties 

Application Arguments 
No. of inst. 
simulated 

[M] 

No. of 
cache 
access     
[M] 

CRC 5000 145.8 59.8 
TL 128 5000 6.9 3.9 

ROUTE 128 5000 14.2 7.1 
DRR 128 5000 12.9 7.9 
NAT 128 5000 11.4 5.6 

MD5 5000 209.1 73.2 

URL small_inputs 5000 497.0 249.1 

 

ROUTE: IPv4 routing according to RFC 1812 [37] is implemented in the 

Route application. When a packet arrives in a router its next network hop is 

decided by the router. Route implements the table lookup along with internet 

checksum (for the header). During processing, there are changes in the header (for 

example, the Time-To-Live value). It may fragment the packet and forward it. 

The code is also from the FreeBSD operating system [36]. The values observed in 

the ROUTE application are: the entries in the created RouteTable, the checksum 

value, the ttl value, and the radix tree entries traversed for each packet.  

DRR: Deficit-round robin (DRR) scheduling [38] is a scheduling method 

implemented in modern network switches. In DRR, all the connections through the 
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router have separate queues. Using these queues, the router tries to accomplish a 

fair scheduling by allowing the same amount of data to be passed from each queue. 

The implementation is based on the algorithm by Shreedhar and Varghese [38]. 

The data values in the DRR application are: the entries in the created 

RouteTable, the radix tree entries traversed for each packet, the value of the 

deficit list for each packet, and the deficit information read for the packet.  

NAT: Network Address Translation (NAT) is a common method for IP 

address management. NAT operates on a router, usually connecting two networks, 

and translates the private (not globally unique) addresses in the internal network 

into legal addresses before packets are forwarded onto the public network. Hence, 

for any departing packet, the source IP on the packet should be changed. 

Similarly, the destination address on any incoming packet should also be modified. 

The program accomplishing this task is using several routines from the FreeBSD 

operating system [36]. The data values used for measuring errors in NAT are: 

initial IP source address, value in the interface for translation, translated IP source 

address, the IP destination address after translation, the entries in the NAT table, 

and the radix tree entries traversed for each packet.  

MD5: Message Digest algorithm (MD5) creates a signature for each 

outgoing packet, which is checked at the destination [39]. The signature is 

cryptographically secure, hence if the received packet does not match the 

signature, then the receiver will assume that the packet is unreliable and discard 

it. The implementation is from RSA Data Security, Inc. [40]. The errors in MD5 



 
 

42 

 

are binary errors. So they are easily detectable. In other words, if the output string 

of the erroneous execution does not exactly match the correct execution, the 

packet is said to be processed incorrectly. We then measure the fraction of packets 

incorrectly processed.  

URL: URL implements URL-based destination switching, which is a 

commonly used content-based load balancing mechanism. In URL-based switching, 

all the incoming packets to a switch are parsed and forwarded according to URL. 

For example, all image requests might be sent to an image server. This application 

increases the utility of specialized servers in a server farm. The implementation is 

based on the description from PMC-Sierra [41]. The data structures in the URL 

application that are observed are: URL table entries, final IP destination address, 

RouteTable entries, the checksum value, the ttl value, and the radix tree entries 

traversed for each packet. 

2.5. Error Injection and Measurement 
We introduced faults in the applications by simulating random faults in the 

data cache. Erroneous values are inserted randomly in the register files and 

propagated during the execution of the applications. At the same time, the 

proposed error metrics for each of the applications are scanned. Every mismatch of 

the values between the correct simulation and the erroneous simulation is counted 

as an application error for the corresponding application metric. We observe some 

error metrics reacting more sensitively to hardware faults than others. As discussed 

in Section 4.3, the error metrics could be classified as volatile and non-volatile 
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errors. For example, any error in the RouteTable entries is permanent and affects 

the system severely. On the other hand, an error in the ttl value of a packet 

during routing is limited to the corresponding packet, hence is a volatile error.  

We assume a processor architecture similar to a generic Network Processor 

(NP). We model a relatively simple execution core with a local instruction cache, a 

local data cache, and a shared cache that corresponds to a level 2 cache as 

described in Section 2.6. Although we apply our ideas to a packet processor, they 

can be applied to any type of processor that executes applications with fault 

tolerance (e.g. media processors). Therefore, we selected more generic 

programmable processor architecture.  

One important aspect of the cache accesses is whether to include a fault 

detection scheme or not. In this work, we have assumed an architecture where no 

fault detection scheme (e.g., parity) is employed. In addition, we assume that the 

data in the level 2 cache (or the next level of memory hierarchy) will always be 

correct if it is not written back from the first level cache. So, if a fault is detected, 

we can access the data from the level 2 cache. Therefore, error correction 

techniques (such as Hamming codes) would incur unnecessary complication on the 

design and energy consumption and hence are not considered in our studies.  

2.5.1 Fallibility Factor 

We need to introduce a measurement index to analyze the effect of 

hardware errors on the networking applications. Since the processor is going to 
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make errors, traditional approaches such as delay, energy, or energy-delay product 

would be insufficient. We define the metric fallibility as the probability of the 

processor making an error for the application. One can use the number of 

hardware faults that are not detected to measure the fallibility. However, due to 

the application-specific nature of our target architectures, we use application errors 

in the fallibility factor as discussed in Section 2.5.1. Particularly, fallibility 

corresponds to the fraction of packets that have any type of errors. Note that even 

if the packet is correctly forwarded, it can still contribute to the fallibility rate. 

For example, if the ttl value of the packet is different than what it would be in 

case of correct execution, we consider the packet to have an error.  

2.5.2 Fatal Error Probability 

We pay special attention to fatal errors. Since fatal errors prevent other 

packets from being processed1, we calculate the number of packets successfully 

processed until the occurrence of a fatal error. The reported fallibility factors are 

based on this number. We also report the probability of a fatal error in addition to 

the fallibility factor. Particularly, we record the probability of a fatal error with 

increasing error introduction rate. Increased hardware errors make the system 

more susceptible to termination. As a result fewer packets can be processed 

successfully at higher error introduction rate. 

                                     
 
1 Majority the fatal errors we have observed during our simulations are caused by the execution getting into an infinite loop.  
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The cause of the fatal errors can be attributed to several factors and we can 

classify the errors accordingly. A fatal error may occur due to an unimplemented 

system call or an access to restricted or non-existent memory location. The system 

crashes if one of these fatal errors occurs. However, the system may run into an 

infinite loop because of an error. We classify this fatal error as the “silent error”. 

We propose different remedies for the fatal errors depending on their 

nature. The destructive errors can be taken care of by higher levels of the system 

(e.g. operating system) that reset the system to a stable state to prevent a system 

crash. However, to prevent the “silent error”, we can implement the check-pointing 

scheme to prevent the system from running into an infinite loop.    

2.6. Simulation Environment  
We use the SimpleScalar/ARM [42] for our simulations. We modified the 

input set to model a processor similar to execution cores in a variety of Network 

Processor architectures. Particularly, we simulate a processor similar to 

StrongARM 110 with 4 KB, direct-mapped L1 data and instruction caches with 

32-byte line-size, and a 128 KB, 4-way set-associative unified L2 cache with a 128-

byte line-size. We modified the applications to output the values of data structures 

mentioned in the previous section. As discussed in 2.4, the data metrics can be 

divided into two major categories. Some of them record the control structure of 

the application and the rest describe the packet processing tasks of the networking 

applications. All the applications dump the corresponding data metrics into a file 

that is processed later to calculate the application errors. Since there is always a 
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probability of early termination due to fatal errors, we also record the total 

number of packets processed in each simulation.  

The simulator is modified to introduce random errors into the execution 

and to simulate the effects of the introduced errors. The architecture has been 

designed to propagate the introduced errors in subsequent stages. However, we 

must remember that it is the inherent nature of the applications, which enables 

them to limit the effect of the volatile errors within a particular packet. We chose 

an initial error probability of 12*10-8 per bit, as reported by Shivakumar et al. [30]. 

The error rate is calculated for each bit accessed independently. Therefore, we do 

not simulate the effect of relation between errors. Then, we increase the error rate 

in steps until it is set to 819.2*10-8. 

2.7. Simulation Results 

2.7.1 Application Error Measurement 

This section describes the simulation results observed for selected NetBench 

applications. For different error rates, effects on the data structure of each 

application discussed in Section 2.4 are recorded. Figure 2.8 to Figure 2.14 describe 

the behavior of seven selected network applications for different error introduction 

rate. Figure 2.8 presents the results for the ROUTE application. Intuitively, the 

faults in the static data structures (volatile error) should have significantly more 

impact on the application behavior. This can be observed for initialization error. 

However, for most error types, the difference is not drastic. This behavior is due to 

the shorter length of the static data structure initialization and modification of the 
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application. In most of them, we spend less time in the control structures. For 

networking applications, majority of time is spent on processing the packets. 

Therefore, although each fault happening during initialization has larger impact on 

the error rate compared to the faults during packet processing tasks, the overall 

impact of errors during the static data structure tasks is not drastically more on 

the application errors. This is an encouraging result, because in many cases the 

processor will not have information about the type of task it is executing. Since 

the effects of control plane tasks are relatively smaller, the overall impact of errors 

can be kept minimal.   

Figure 2.11 presents the results for the NAT application. Similar trends can 

be observed for this application as well. Particularly for the NAT application, we 

see that errors due to faults during packet processing tasks have more impact on 

the application behavior than the faults during static data structure tasks. This 

can be attributed to the fact that the NAT application does a lot of processing 

over each packet. As a result, the probability of an error during data processing 

tasks increases.  

The results for the remainder of the applications are not discussed in detail 

due to their similarities with the presented results. However, all of them show 

similar characteristics of the applications under erroneous execution. In general, 

most applications can easily tolerate a small probability of error. 
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Figure 2.8. Error Generation probability for Route application 
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Figure 2.9. Error Generation probability for DRR application 
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Figure 2.10. Error Generation probability for TL application 
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Figure 2.11. Error Generation probability for NAT application 
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Figure 2.12. Error Generation probability for MD5 application 
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Figure 2.13. Error Generation probability for CRC application 
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Figure 2.14. Error Generation probability for URL application 

With the increase in error introduction rates, the applications start 

producing erroneous outputs. This is expected as increased hardware errors will 

definitely perturb the system integrity. The extent of application errors depends on 

the nature of the application and the error metric being observed. Some of the 

application metrics (e.g. ROUTE table entry) are affected easily, although being 

volatile errors, the effect of the erroneous behavior is limited to a single packet. 

We see that the fault introduction rate in the data cache can be increased up to 4 

times without causing a major impact on the application output. During the 

simulations, we have seen that not all the faults have an impact on the application 

output. On average we have only observed an error for approximately 15% of the 

faults.  

2.7.2 Fallibility Factor 

In almost all the applications, we see that increasing the error introduction 

rate increases the fallibility factor. For lower fault introduction rate, the fallibility 
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factor suggests that the applications are not affected by the hardware faults. 

However, with increase in the error introduction probability, the integrity of the 

system becomes imbalanced which is properly reflected in the fallibility factor 

values. We recorded the probability of different application errors for each of the 

seven NetBench applications. The fallibility factor is obtained by adding 1 with 

the sum of all application error probabilities for each application.  

Table 2-B. Fallibility Factor of Different Applications  

Fallibility Factor 
Appln. 

12.8*10-8 51.2*10-8 204.8*10-8 819.2*10-8 

CRC  1.0023 1.0038 1.0073 1.0524 

Tl 1.0010 1.0063 1.0159 1.1350 

ROUTE 1.0003 1.0008 1.0013 1.0175 
DRR 1.0000 1.0010 1.0023 1.0076 
NAT 1.0003 1.0020 1.0035 1.0770 

MD5 1.0000 1.0115 1.0552 1.2610 

URL 1.0003 1.0013 1.0025 1.0177 

 

Table 2-B gives us a common framework to compare the behavior of the 

network applications subjected under hardware errors. The MD5 application shows 

maximum sensitivity towards errors. It has a fallibility factor of 1.261 when the 

error introduction rate is highest (819.2*10-8). This rate means that on average in 

26.1% of the packets an error key differs from the execution without any faults.  

2.7.3 Fatal Error Probability 

Each application can sustain the effect of the introduced error to varying 

extent. For smaller error rates we observed the execution of the application 

without any observable error in the data structures and the application output. 
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With increase in the error introduction rate, the applications started to produce 

erroneous outputs and data structure values. For larger error rates, the overall 

data integrity of the system was lost and the applications crashed. This is 

indicated by the fatal error probability. Figure 2.15 shows the probability of fatal 

errors at different error introduction probabilities. The figure suggests that we 

should never allow the system to work in an environment with high error 

introduction probability. This would cause a fatal error. A network system with 

errors in few packets is acceptable. However, an unstable system is certainly not 

desirable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15. Fatal Error probability for different applications 

2.8. Related Work 
High transient-error tolerant system design has traditionally been 

considered in the context of systems that operate in high-radiation environments 

or in outer space, where there is a heavy concentration of alpha-particles and 
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atmospheric neutrons [43]. Recent IBM Research showed that computer systems 

are susceptible to transient faults induced by these particles [25]. In the circuit 

verification area, there has been a strong emphasis on reliability which is an 

important problem in IC fabrication. Earlier researches have studied potential 

errors in the pre-silicon [44] stage. Additionally errors subsequent to the 

fabrication process [45] have been analysed. High transient fault resilient computer 

systems design [46] has gained greater significance due to the combined effect of 

higher integration densities, lower voltages, and faster clock frequencies. 

Fault injection is an attractive method for validation for estimating the 

dependability of computer systems [47]. Studies have already shown that the 

workload has a significant effect on the dependability measures [48, 49]. However, 

in our case we have investigated the application-level behavior of networking 

programs under hardware faults.  
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CHAPTER 3 

RELIABILITY-PERFORMANCE TRADEOFF ANALYSIS 

 Architectural optimization based on application specific characteristics is 

one of the emerging trends in high performance computing. Traditionally, 

computer architects utilize application characteristics to explore higher levels of 

Instruction Level Optimization (ILP). They systematically evaluate application 

performance improvements associated with architectural enhancements that 

embodies acceptable cost/performance tradeoffs while reducing stalls in the 

microarchitecture. In this chapter, we have utilized novel system attributes to 

enhance system performance in modern microprocessor system.  

First we will discuss how we can tradeoff reliability to gain in terms of 

performance in a computing system. With technology scaling, variability in 

transistor performance is increasing continually making them more prone to fault. 

On the other hand, Moore’s law will enable us to billions of transistor in a single 

die. Figure 3.1 [50] depicts the trend starting from 2001 with 130nm technology 

generation, with a 300mm2 die capable of integrating one billion transistors. The 

curve shows by 2015 we will have 100B transistors on a 300mm2 die, with almost 

1.5B transistors available for logic. The logic transistors tend to be larger than 
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transistors in the memory, take larger space, and consume more power. With an 

abundance of transistors that may not work reliably all the time, it is possible to 

design a reliable architecture with unreliable circuit elements. This kind of 

optimization would be most useful more application domains such as networking, 

media processing where an inherent robustness is present in the system. 

 
Figure 3.1. Transistor Integration Capacity 

For networking application domain, we have observed a large amount of 

modularity in applications. With the emerging trend of using multiple cores in 

network processing systems, task allocation is an important bottleneck for 

performance optimization. We propose an intelligent task allocation scheme that 

utilizes modularity in networking application and statistical information about 

module processing. Overall, this chapter summarizes how holistic architecture 

framework can improve system performance using the following system attributes: 

• Inherent system robustness  

• Variability in application module processing 
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A. CLUMSY PROCESSING IN PACKET PROCESSORS 

Hardware faults can occur in any computer system. Although faults cannot 

be tolerated for most systems (e.g., servers or desktop processors), many 

applications (e.g., networking applications) provide robustness in software. 

However, processors do not utilize this resiliency, i.e., regardless of the application 

at hand, a processor is expected to operate completely fault-free. In this chapter, 

we question this traditional approach of complete correctness and investigate 

possible performance and energy optimizations when this correctness constraint is 

released. We first develop a realistic model that estimates the change in the fault 

rates according to the clock frequency of the cache. Then, we present a scheme 

that dynamically adjusts the clock frequency of the data caches to achieve the 

desired optimization goal, e.g., reduced energy or reduced access latency. Finally, 

we present simulation results investigating the optimal operation frequency of the 

data caches, where reliability is compromised in exchange of reduced energy and 

increased performance.   

3.1. Introduction 
 

Over the last decade, in spite of the complexities of new manufacturing 

technologies and increasingly complicated architectures, designers have been able 

to steadily push the limits of performance of microprocessors. This is achieved 

through optimizations at the architectural level (such as aggressive pipelining 

strategies) and at the circuit level (such as smaller feature sizes). As we move into 
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deeper sub-micron technologies, the complexity of pushing the circuit performance 

has become an important obstacle. Increased heat dissipation and sub-micron 

effects are two examples of the limitations on the optimizations at the circuit level. 

In this work, we design a micro-architectural optimization to aid the circuit 

designers to overcome such hurdles. Particularly, we will allow the clock frequency 

of the data cache to go beyond the specifications of the circuit designer. Instead of 

performing this “over-clocking” uninformed, we will first explore the relation 

between the operating frequency (i.e., clock frequency) of a cache structure and its 

robustness. As we increase the clock frequency, the probability of a fault in the 

data cache accesses increases. This may result an erroneous execution of the 

applications. Hence, we name our proposed architecture a clumsy packet processor. 

In our approach, we first develop a model for estimating the hardware faults when 

the clock frequency is changed. This model will allow us to develop ultra-low 

power cache structures. In addition, the delay of the components will also be 

reduced. The disadvantage of this optimization is that the probability of hardware 

failure reduces the reliability of the processor. Overall, our goal is to investigate 

the trade-offs at the application-level, architecture-level, and circuits 

simultaneously in the context of packet processors. We use the term packet 

processor for any type of processor handling packets in a networking hardware. 

These range from network processors (NPs) to ASICs and general-purpose 

microprocessors used in networking hardware.  
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In all computer processors there is an inherent possibility of faults2 being 

introduced into the system. These faults may arise from any of several sources 

such as adverse environmental conditions [51], physical hardware defects, 

electronic noise or logical design flaws [52]. Moreover, this fault problem is 

expected to be even more pressing in the future due to aggressive scaling-down of 

the supply voltages (Vdd), increasing clock rates, and the use of flip-chip 

packaging. While it is critical to put every effort to avoid these faults by careful 

circuit design and packaging, they can still occur and need to be addressed. Hence, 

we should consider reliability trade-offs even during the design of the processors, 

which will operate completely under the specified conditions.  

The effect a fault has on a system is largely dependent on the application in 

question. In most cases, omitting faults is not an option, i.e., the processor should 

be designed to capture and eliminate faults. This is the inherent nature of the user 

expectation. However, for other domains—such as networking and media 

applications—a certain level of error is acceptable, and the integrity of the 

system’s behavior can be maintained despite potential faults. This is also related to 

the properties of the systems: networking software/systems are implemented with 

the assumption that the hardware can fail (e.g., ROUTErs can drop packets).  

Regardless of a fault’s source, the system will operate differently depending 

on the corrupted data. Electronic noise may lead to the corruption of a single piece 

                                     
 
2 A fault is an incorrect execution of the hardware. An error is defined to be an incorrect outcome of an application due to a 
fault.  
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of transient data and affect behavior only momentarily. On the other hand, a 

static data element might be damaged—such as a lookup table—disrupting the 

system for a longer period of time and perhaps making recovery from the error 

more difficult. In this research, we analyze the susceptibility of a data cache to 

faults and the resulting behavior for packet processors. Particularly, we study 

several networking applications and define error metrics for each of these 

applications. We first make the distinction between the control plane and data 

plane tasks in these applications and measure the error behavior of the 

applications under different operation frequencies in these segments. Then, we 

perform a study where we introduce cache faults and measure their effect on these 

applications. Our goal is to extract optimal execution properties of the caches for 

different applications. We also present a scheme that dynamically adjusts the 

processor properties to achieve reduced energy consumption and/or increased 

performance. Specifically, our contributions in this chapter are: 

• We propose the design and utilization of clumsy packet processors,  

• We discuss simulation results investigating an optimal point for trading off 

the reliability for reducing cycle time of the data cache in a representative 

architecture,  

• We implement a scheme to dynamically adjust the operation frequency of 

the data cache to achieve the desired objective (e.g., reduced energy).  
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There is also an increasing motivation to utilize NPs in wireless systems. In 

such systems, energy consumption is arguably the most important design criteria. 

Our optimization scheme reduces the execution delay and the energy consumption 

simultaneously.  

The types of errors examined are similar to those in previous chapter 

(Section 2.3 and 2.4). One type is considered to be a volatile error, affecting data 

only temporarily. In general this type of error will only concern a limited amount 

of data, and will not noticeably affect performance provided that the error does 

not continually reoccur. The other type is a nonvolatile error, which has an effect 

on a static data structure (e.g., the routing table). This type of error will have a 

lasting effect on the system. Our goal in this chapter is to define data structures in 

these applications that can be used to measure their error behavior.  

3.2. Applications and Error Measurement 
 

In this section, we discuss the networking applications studied in this 

project and present the error metrics used for each application. We selected seven 

applications from the NetBench [27] suite. The applications are listed in Table 

Table 2-A. NetBench is a benchmarking suite designed for NPs. It contains 

applications representing level 3 tasks (e.g., ROUTE) as well as higher-level 

programs.  

As a metric of “reliability”, we first identify important data structures and 

outputs of key function units for each application. Our goal is to make a 
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comparison of these data values between the correct execution and an execution 

with faults (Section 3.3). Thereby, we will measure the probability of an error in 

the application. Some of these data structures have more impact on the overall 

output than others (e.g., a routing table error is more important than an error in 

the ttl value calculation). However, in this study we do not assign weights to 

them. Note that this type of measurement assumes that the application executes 

to completion even under faults. However, we are executing erroneous code (i.e., a 

code that will read erroneous data). As the data values are changed, it is possible 

that the application might fall into an infinite loop or even cause the system to 

crash. This is of interest to us for measuring the effects of faults. Therefore, an 

error, which prevents a complete execution is a special one called a fatal error.  

3.3. Clock Variation and Fault Detection 
We assume a processor architecture similar to a generic Network Processor 

(NP). We model a relatively simple execution core with a local instruction cache, a 

local data cache, and a shared level-2 cache. Although we apply our ideas to a 

packet processor, they can be applied to any type of processor that executes 

applications with fault resiliency (e.g., media processors).  

One important aspect of the cache accesses is whether to include a fault 

detection scheme or not. If we don’t provide the processor with an error detection 

and correction scheme, there is a possibility of the system to crash because of the 

occurrence of a fatal error. Moreover, as we are trading off reliability for 

performance and power of the system, it is a good idea to detect and correct faults 
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for the system to perform without any noticeable problem. There is a large space 

of possible implementations for error correction. Our framework can utilize any of 

these techniques. However, these techniques (such as Reed-Solomon or Hamming 

codes [53]) are usually computationally complex. Hence they would incur a 

performance overhead. Moreover, it could add extra cost due to additional 

hardware logic. We used simple parity checking to detect faults in a cache block. 

Upon detection, we have defined simple, cost-effective error correction schemes as 

discussed in the following sections.  

In Section 3.4, we will experiment with a processor architecture where cache 

blocks are protected with parity and a processor architecture without any fault 

detection scheme. We are modifying the clock frequency of the level-1 cache only. 

Hence, we assume that the data in the level-2 cache will be correct unless an 

incorrect value from level-1 is written to it. Therefore, if a fault is detected, we can 

access the data from the level 2 cache. As the error correction techniques (such as 

Hamming codes) would incur unnecessary complication on the design and energy 

consumption, they are not considered in our studies.   

Once a fault is detected, we have different options of recovery. A fault 

might be caused during the read in which case the actual data in the cache is 

actually correct or during the write to the cache. We cannot determine the exact 

source of the fault. The first technique we utilize assumes that every fault observed 
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is a write fault. Therefore, for every fault detected, it invalidates the cache block3 

and starts accessing the level 2 cache. This strategy is called a one-strike 

strategy. The second strategy accesses the cache after a fault and if another fault 

is detected, it invalidates the cache block and accesses the level 2 cache. This 

strategy is called a two-strike strategy. Similarly, a three-strike strategy 

accesses the level 1 cache twice before invalidating the block. Even if the processor 

employs a fault detection mechanism, there is still a chance of faults. Therefore, 

the application can behave erroneously.  

Over-clocking the cache can be utilized during the design process of a 

processor. However, this is hard to achieve for programmable processors (such as 

Network Processors), because different applications might require different levels of 

reliability. Therefore, in the next section we also present results for a dynamic 

frequency adaptation technique. In this scheme, the processor adapts the 

operation frequency of the data cache according to the faults it has observed. 

Particularly, it records the number of parity failures during execution epochs. For 

our simulations, after the completion of the processing of 100 packets, the 

processor makes a decision for whether to increase the frequency, to keep it in its 

current state, or to decrease it depending on the number of faults. Note that the 

possible frequency settings are discrete. Hence, when the frequency is changed, it 

will be set to the next frequency level available. Whenever a frequency change is 

                                     
 
3 If the cache has sub-blocks, only the corresponding portions of the cache block can be invalidated and accessed from the 
level 2 cache. However, in this research we do not study such cache structures.  
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made, the number of faults in the previous epoch is stored. During the decision, if 

the number of faults is more than X1% of the last stored fault rate, the frequency 

is reduced. If the fault rate is less than X2% of the last stored rate, the frequency is 

increased. For all other rates, the frequency is not changed. A detailed study 

reveals that setting X1 to 200% and X2 to 80% overall results in the best 

performance of the dynamic scheme. This also relates to the fault model we have 

developed in Section 5. As shown in Figure 5, the clock cycle can be reduced by 

almost 60% before we observe a major increase in the number of faults. Depending 

on the packet processing time, the X1 and X2 values will lean towards increasing 

the frequency until a significant increase in the number of faults.  

Most networking applications have application errors proportional to the 

number of faults occurred during the processing of a packet. The dynamic 

frequency adaptation technique observes the packet processing and makes the 

decisions for a constant number of packets (instead of time). This allows the 

system to dynamically adjust to the properties of the application. This information 

is usually available to the cores.  

3.3.1 Implementation of the Cache Overclocking Architecture 

Overclocking is applied to the L-1 data cache only, so we need to 

synchronize the cache with the rest of the core. For static over-clocking, this is 

straightforward. If the original data cache latency is 2 processor cycles and the 

cache is over-clocked by 50% or more, the cache latency will always be 1 processor 

cycle and the processor will be designed accordingly. In addition, in the static case, 
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we do not even need a separate clock signal to the data cache. The clock input of 

the cache can be multiplied to 2 clock cycles from a single one.  

The incorporation of the dynamic overclocking is more complicated. In this 

case, we need a separate clock signal to the cache, and more importantly, we need 

to be able to adjust between a pipeline with 2-cycle cache latency and 1-cycle 

cache latency. Note that, we don’t change the frequency of the data cache 

frequently. At the completion of processing for every hundredth packet, a decision 

is taken about the changing the cache clock frequency.  In addition, note that 

dynamically varying the clock frequency of the cache is easier to implement than 

varying the supply voltage [54]. This can be achieved while the cache is being 

accessed and there is no need to flush the cache. In accordance with this, we incur 

a 10-cycle penalty whenever the frequency is dynamically varied. In addition, the 

hardware to implement variable clock rate is also quite simple. We assumed that 

the frequency can be increased by 50%, 100%, or 300%, corresponding to Cr values 

of 0.75, 0.5, and 0.25.   

3.3.2 Error Injection and Measurement 

We introduced faults in the applications by simulating random faults in the 

data cache. Erroneous values are inserted randomly in the cache accesses and 

propagated during the execution of the applications. At the same time, the 

proposed error metrics for each of the applications are scanned. Every mismatch of 

the values between the correct simulation and the erroneous simulation is counted 

as an application error for the corresponding application metric. We observe some 
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error metrics reacting more sensitively to hardware faults than others. As discussed 

in Section 3, the error metrics could be classified as volatile and non-volatile errors. 

For example, any error in the RouteTable entries is permanent and affects the 

system severely. On the other hand, an error in the ttl value of a packet during 

routing is limited to the corresponding packet, hence is a volatile error. However, 

we do not make such a distinction in our simulations: regardless of the source of 

an application error, we simply observe the output and capture the change in the 

application output. These changes may be caused by volatile errors or nonvolatile 

errors. From our perspective, we are only interested in measuring the change in 

the application output for a given hardware fault rate and this is independent of 

the sources of the errors. 

3.3.3 Fallibility Factor 

We need to introduce a measurement index to analyze the effect of 

hardware faults on the networking applications. Since the processor is going to 

make errors, traditional approaches such as delay, energy, or energy-delay product 

would be insufficient. We define the metric fallibility as the probability of the 

processor making an error for the application. One can use the number of 

hardware faults that are not detected to measure the fallibility. However, due to 

the application-specific nature of our target architectures, we use application errors 

in the fallibility factor as discussed in Section 4. Particularly, fallibility corresponds 

to the fraction of packets that have any type of errors. Note that even if the 

packet is correctly forwarded, it can still contribute to the fallibility rate. For 
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example, if the ttl value of the packet is different than what it would be in case of 

correct execution, we consider the packet to have an error.  

3.3.4 Fatal Error Probability 

We pay special attention to fatal errors. Since fatal errors prevent other 

packets from being processed4, we calculate the number of packets successfully 

processed until the occurrence of a fatal error. The reported fallibility factors are 

based on this number. We also report the probability of a fatal error in addition to 

the fallibility factor. Particularly, we record the probability of a fatal error with 

increasing error introduction rate. Increased hardware faults make the system more 

susceptible to termination. As a result fewer packets can be processed successfully 

at higher error introduction rate. 

The cause of the fatal errors can be attributed to several factors and we can 

classify the errors accordingly. A fatal error may occur due to an unimplemented 

system call or an access to restricted or non-existent memory location. The system 

crashes if one of these fatal errors occurs. However, the system may run into an 

infinite loop because of an error. We classify this fatal error as the “silent error”. 

We propose different remedies for the fatal errors depending on their 

nature. The destructive errors can be taken care of by higher levels of the system 

(e.g. operating system) that reset the system to a stable state to prevent a system 

                                     
 
4 Majority the fatal errors we have observed during our simulations are caused by the execution getting into an infinite loop.  
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crash. However, to prevent the “silent error”, we can implement the check-pointing 

scheme to prevent the system from running into an infinite loop.    

3.3.5 Comparison Metric  

We need to introduce a measurement index to determine the “optimal” 

point of operation. Since, the processor is going to make errors, traditional 

approaches such as delay, energy, or energy-delay product would be insufficient. 

We define the metric energy-delay-fallibility product, which is the product of the 

energy consumption, the execution cycles of the application, and the “fallibility” 

factor of the processor. The energy consumption is the energy consumed in the 

whole processor during the execution of the application. Particularly, fallibility 

corresponds to the fraction of packets that have any type of errors. We also pay 

special attention to the fatal errors. Since fatal errors prevent other packets to be 

processed5, we calculate the number of packets successfully processed till the 

occurrence of a fatal error. The reported energy-delay-fallibility factors are based 

on this number. We also report the probability of a fatal error in addition to the 

energy-delay-fallibility product. Particularly, we record the probability of a fatal 

error with increasing clock frequency. Increased clock frequency makes system 

more susceptible to termination. As a result less number of packets can be 

processed successfully at higher clock frequency. 

                                     
 
5 Majority the fatal errors we have observed during our simulations are because the execution gets stuck in an infinite loop. 
For such an error, the processor can be modified such that we can recover from the error. 
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Although we argue that the packet processors can have faults, frequent 

faults are certainly undesirable considering the system behavior. Therefore, instead 

of giving the same weight to each component in energy-delay-fallibility product, 

one can give more weight to the fallibility. Particularly, the product can be 

calculated as energyk-delaym-fallibilityn according to the needs of the architecture. 

In our studies, since delay and fallibility are more important than energy, we set k 

to 1, m to 2, and n to 2. The energy-delay-fallibility product can be defined for a 

single component (e.g., cache). However, in this work, we measure the metric for 

the applications.  

3.4. Experimental Results 

3.4.1 Simulation Environment  

We use the SimpleScalar/ARM [42] for our simulations. We modified the 

processor configuration to model a processor similar to execution cores in a variety 

of Network Processor architectures. Particularly, we simulate a processor similar to 

StrongARM 110 with 4 KB, direct-mapped L1 data and instruction caches with 

32-byte line- size, and a 128 KB, 4-way set-associative unified L2 cache with a 128-

byte line-size. The level 1 data cache has 2-cycle latency and the level 2 cache 

latency is 15 cycles. We first modified the applications to mark the values of data 

structures mentioned in the previous chapter. Then, we have modified the 

simulator to introduce random faults into the execution and to simulate the effects 

of the introduced faults. We chose an initial fault probability of 2.59*10-7 per bit 

(in accordance with the formula (2.4)). This fault rate is similar to the rates 
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reported by Shivakumar et al. [55]. The probability of a two-bit fault is set to 

2.59*10-9, and the probability of three-bit faults is 2.59*10-10 in accordance with 

reported correlation between single-bit and multiple bit faults [56]. For the higher 

clock rates, we increase the fault rate in steps according to formula (Section 2.4).  

3.4.2 Application Error Behavior  

This section describes the simulation results observed for the networking 

applications. The experiments in this section measure the effect of different fault 

rates on the data structures discussed in Section 2.4.  

Figure 3.2 presents the results for the ROUTE application. For the results 

presented in Figure 3.2(a), we only introduce faults during the control plane tasks. 

Similarly, for the results in Figure 3.2(b), faults are introduced only during data 

plane tasks. For the results in Figure 3.2(c), faults are introduced during both the 

control plane and data plane tasks. Intuitively, the faults in the control plane tasks 

should have significantly more effect on the application behavior. This can be 

observed for initialization error when Figure 3.2(a) and Figure 3.2(b) are 

compared. However, for most error types, the difference is not drastic. This 

behavior is due to the shorter length of the control plane tasks compared to that of 

the data plane tasks. Therefore, although each fault happening during the control 

plane tasks has larger impact on the error rate compared to the faults during data 

plane tasks, the overall impact of varying the clock rate during the control plane 

tasks is not drastically more on the application errors. This is an encouraging 

result, because in many cases the processor will not have information about the 
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type of task it is executing. Hence, it might be complicated to have different clock 

rates for different tasks. Since the results indicate that the effect of faults during 

control plane tasks is tolerable, we can “safely” vary the clock frequency. 
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Figure 3.2. Error Probability of ROUTE application 

(b) Faults introduced in data plane

(c) Faults introduced in both data and control planes

(a) Faults introduced in control plane
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Figure 3.3. Error Probability of NAT application     

(b) Faults introduced in data plane

(c) Faults introduced in both data and control planes 

(a) Faults introduced in control plane
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Figure 3.3 presents the results for the NAT application. Similar trends can 

be observed for this application as well. Particularly for the NAT application we 

see that errors due to faults during data plane tasks have more impact on the 

application behavior than the faults during control plane tasks. The results for the 

remainder of the applications are not presented due to their similarities with the 

presented results. However, all of them show identical characteristics of the 

applications under erroneous execution. Overall, all the applications can sustain 

faults to varying extents. For smaller fault rates we observed the execution of the 

application without any observable error in the data structures and the application 

output. For larger fault rates, on the other hand, we encountered fatal errors and 

errors in the data structure values.  

3.4.3 Fallibility Factor 

In almost all the applications, we see that increasing the hardware fault rate 

increases the fallibility factor. For lower fault introduction rate, we observe a 

negligible change in fallibility factor, suggesting that the applications are not 

affected by the hardware faults. However, with the increase in the fault 

probabilities, the applications become vulnerable, which is properly reflected in the 

fallibility factor values. We recorded the probability of different application errors 

for each of the seven NetBench applications. The fallibility factor is obtained by 

summing up the probability of all application errors for each application. Table 3-

A gives us a common framework to compare the behavior of the network 

applications subjected under hardware faults. The MD5 application shows 
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maximum sensitivity towards errors. It has a fallibility factor of 0.261 when the 

error introduction rate is highest (25% relative clock frequency). This rate means 

that on average, in 26.1% of the packets differ from the execution without any 

faults. 

Table 3-A. Fallibility Factor of Different Applications  
Fallibility Factor  

Static Overclocking Rate – Relative clock Freq (Cr) Appln. 
100% 75% 50% 25% 

CRC  0.0023 0.0038 0.0073 0.0524 

Tl 0.0010 0.0063 0.0159 0.1350 

ROUTE 0.0003 0.0008 0.0013 0.0175 

DRR 0.0000 0.0010 0.0023 0.0076 

NAT 0.0003 0.0020 0.0035 0.0770 

MD5 0.0000 0.0115 0.0552 0.2610 

URL 0.0003 0.0013 0.0025 0.0177 
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Figure 3.4. Fatal error probabilities for different clock rates. 

3.4.4 Fatal Error Probability Measurements  

We recorded the probability of a fatal error with increased clock frequency. 

Unlike other errors, fatal errors may destroy the system integrity. This prompts to 
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ensure that the clock frequency should not reach a value that may result a high 

probability of fatal error. Figure 3.4 depicts the fatal error probability for different 

applications when there is no error detection scheme employed. Similar to the 

fallibility results, we see that the fatal error probability is zero for smaller increases 

in the clock rate. As we exceed 100% increase in the clock rate, we start seeing an 

impact on the fatal error probability. Note that the fatal error probabilities in 

Figure 3.4 are measured for the base architecture, which does not employ any error 

detection scheme. Error detection schemes reduce the probability of fatal errors 

dramatically. In fact, during the simulations of the architectures with error 

detection, we have never encountered a fatal error. 

3.4.5 Energy-Delay-Fallibility Measurements  

The simulations presented in this section introduce faults during both the 

control plane and the data plane. As we have discussed in Section 3.3.5, different 

techniques are compared using the energy-delay2-fallibility2 product. To measure 

the energy consumed during the applications we use three models. For the energy 

consumption of the overall processor, we used the results presented by Montanaro 

et al. [57]. The energy consumed by the caches when they are operated with full 

frequency is found using CACTI [58]. When the clock frequency is increased, the 

voltage swing decreases. The energy consumed by the cache linearly shrinks with 

this decrease in the voltage swing. Therefore, we used the model presented in 

Figure 2.2 to find the relative voltage swing for different clock rates. Particularly, 

the energy consumed by the cache reduces by 45%, 19%, and 6% for relative clock 
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rates of 0.25, 0.5, and 0.75, respectively. To estimate the energy consumed by the 

error detection scheme, we use the results presented by Phelan [59]. The level-1 

data cache consumes 16% of the overall chip energy. Parity increases the energy 

consumed during reads by 23%. Similarly, the energy consumed during writes 

increases by 36%. We assumed that each word (32-bits) is protected by a single 

parity bit. To measure the delay in the applications, we calculate the average 

number of cycles spend for each packet. Note that we cannot use the total number 

of execution cycles, because some simulations do not finish to completion due to 

fatal errors. The fallibility factor is calculated as explained in Section 2.5.1.  

Results for the ROUTE application are summarized in Figure 3.5. For 

ROUTE application, we see that the best technique is the static technique with 

50% relative clock cycle when two-strike recovery is used. For the CRC application 

(Figure 3.6), on the other hand, the best configuration is the dynamic frequency 

adaptation with three-strike recovery. When we compare these two applications, 

we see that CRC is more resilient to faults, because due to its streaming nature it 

already has a large cache miss rate. Therefore, additional cache accesses due to 

errors have less effect on the execution time. As explained in Section 3.3.1, three-

strike eliminates some of the incorrect accesses to the level 2 cache that might 

happen by the two-strike scheme. Therefore, three-strike improves the performance 

for the CRC application because it reduces the pressure on the level 2 cache.  
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Figure 3.5. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configuration with Cr = 1, 0.75, 0.5, and 
0.25 for the ROUTE application. The bars represent the relative energy-delay2-

fallibility2 product with respect to Cr = 1 with no-detection.  

 
Figure 3.6. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the CRC application. 

 
Figure 3.7. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the MD5 application. 
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Figure 3.8. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the TL application. 

 
Figure 3.9. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the DRR application. 

 
Figure 3.10. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the NAT application. 
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Figure 3.11. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 for the URL application. 

 
Figure 3.12. Energy-delay2-fallibility2 product for the simulated configurations, the 
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and 

0.25 the average application. 

     Figure 3.7 and Figure 3.8 present the results for the MD5 and TL 

applications, respectively. We see that similar to the ROUTE application, the 

static technique with 50% relative clock cycle and two-strike recovery scheme gives 

the best result. For the TL application, we see that the energy-delay2-fallibility2 

product is reduced by as much as 43%. TL application has a large fraction of load 
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instructions. Therefore, reducing the cache access latency has a significant impact 

on the overall performance.  

One interesting result with the TL application (Figure 3.8) is the inability 

of the dynamic scheme to reduce the energy-delay2-fallibility2 product for the one-

strike scheme. The reason for this is due to some initial errors, the dynamic 

scheme gets late into the 0.5 region. Since the total number of instructions 

executed for this application is small, the overall energy-delay2-fallibility2 remains 

high. The results presented in Figure 3.9 and Figure 3.10 are for the DRR and the 

NAT applications.  

Figure 3.11 presents the results for the URL application. Figure 3.12, on the 

other hand, gives the average of all the simulated applications. Overall, we see 

that the static technique with 50% relative clock cycle and two-strike recovery 

scheme gives the best result reducing the energy-delay2-fallibility2 product by 24%. 

This is partially an artifact of the steps we have selected for the clock frequency. 

Although when we set Cr to 0.25, we see a significant reduction in the energy 

consumption, we also see a sharp increase in the error rates. Therefore, Cr = 0.5 

almost always performs better than the Cr = 0.25. As a result, the dynamic 

scheme also stays mostly in the Cr = 0.5 region and hence does not perform better 

than the static scheme. Note that if we do not consider the errors, the static 

approach with Cr = 0.5 and two-strike recovery scheme reduces the energy-delay 

product of the processor by 17%, and the energy-delay2 product by 26%.  



 
 

81 

 

In almost all the applications, we see that without the error detection, 

increasing the clock frequency increases the energy-delay2-fallibility2. The reasons 

for this are two-fold. First, we take the square of the fallibility in our metric. Since 

we increase the fallibility factor when we increase the clock frequency, there is a 

significant increase in our metric. Second, we see that errors usually increase the 

number of execution cycles. There are two reasons for this. First, erroneous load 

operations usually result in misses in the cache. More importantly, we see that the 

number of instructions executed also increases with the errors. This is mostly due 

to the loops. If one of the values that affect the completion criteria changes, we see 

that in most cases the number of iterations increase. 

3.5. Previous Work on Resilient Architectures 
 

One class of related work is in the area of fault tolerance. Traditionally, 

fault tolerance has caught attention in the context of environments with heavy 

concentration of alpha-particles and atmospheric neutrons [60]. Transient faults 

induced by these particles are shown to decrease the reliability of processors [61]. 

Another area where there has been a strong emphasis on reliability is circuit 

verification, which is an important problem in IC fabrication. Techniques exist to 

study potential errors in the pre-silicon [62] stage and also subsequent to the 

fabrication process [63]. More recently, designing computer systems for resiliency 

[64] to transient faults has gained greater significance due to the combined effect of 

higher integration densities, lower voltages, and faster clock frequencies. There 
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have been various studies utilizing redundancy to increase robustness for SMT 

processors [65, 66], for superscalar processors [67], and for CMPs [68]. All of these 

techniques aim to increase robustness. Our approach, on the other hand, reduces 

it. Although this might seem controversial at a glance, our motivations are similar 

to these studies: correctness cannot be achieved by optimizations only at the 

circuit level. However, we propose to deal with the errors at the higher levels 

instead of trying to eliminate them.  

Validation methods such as fault injection are particularly attractive for 

estimating the dependability of computer systems [69]. Mukherjee et al. introduces 

the architectural vulnerability factor (AVF) for various processor components [70]. 

However, we are not aware of any study that investigates the application-level 

behavior of networking programs under hardware faults. More importantly, these 

studies still do not allow an incorrect execution of the program as we propose in 

this work. Austin introduces DIVA, which is a method for enforcing correctness in 

processors which can make mistakes because of the lack of complete verification 

[6]. DIVA still aims to achieve correctness, whereas in this approach we reduce the 

probability of correct execution.  
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B. STATISTICAL TASK ALLOCATION IN MULTICORE 
NETWORK PROCESSORS 

Chip multiprocessor designs are the most common types of architectures 

seen in Network Processors. In such designs, there are numerous approaches to 

implement interconnects. However, due to the trends in scalability of global 

interconnects, we observe a shift towards ‘systolic array’ architectures where 

different cores are connected through point-to-point links and the packets are 

processed in a pipelined fashion. Intel’s IXP and Cisco’s Toaster processor fall into 

this category. As the Network Processors are used to implement increasingly 

complicated architectures, task distribution among the cores is becoming an 

important problem. In this chapter, we propose a new task allocation analysis 

scheme. This scheme relies on the inherent modular nature of the networking 

applications and intelligently distributes modules among different execution cores. 

An important problem that needs to be tackled in this aspect is the variation of 

execution times of the modules. To address this problem, we have developed a 

technique that uses the probability distribution of the execution times of different 

modules in the networking applications. Furthermore, we have used overclocking 

technique to optimize the performance of the allocated tasks. The combination of 

statistical distribution of modules and the overclocking result in significant 

performance improvements for representative architectures. 

One of the most important bottlenecks for CMP processors in general and 

particularly the Network Processor architectures, is the low scalability of the 
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interconnect networks. Although increasing the number of cores in the processor is 

desirable to take advantage of the parallelism in the application, developing an 

interconnect network to achieve efficient communication among cores becomes 

complicated as the number of nodes is increased. Therefore, with the new 

generation network processor architectures, we are seeing an increased emphasis on 

local communication. For example, the Intel IXP 28xx [71, 72] architectures utilize 

neighbor-to-neighbor links in addition to the global communication structures. In 

such architectures, the utilization of the local communication links is arguably the 

most important factor in determining the performance of the application. With the 

increasing link speeds and the changes in the target applications, it is expected 

that the number of execution cores in the processors will increase. Therefore, high 

utilization of local communication links will become an obligation to achieve the 

desired scalability in next-generation network processors. Clearly, the key factor 

that determines the communication behavior is the task distribution. In other 

words, the mapping of application functionality onto multiprocessing elements 

must be performed intelligently to achieve the desired level of performance. In 

most of the existing architectures, this task is left to the user. With the increasing 

complexity of the architectures, this expectation from the user becomes limiting 

and an automated task distribution scheme is highly desirable. In this chapter, we 

propose a solution to this problem. Particularly, we present an automated task 

allocation analysis scheme for network processors. We utilize the modular nature 

observed in majority of networking applications. First, we divide the applications 
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into modules similar to CLICK [73] and NP-Click [74] environments. Then, we 

profile the applications using a representative workload and perform a statistical 

analysis on the behavior of different modules in the application. This analysis 

provides us with the distribution of the execution times of different modules. Then, 

we utilize this probability distribution information to allocate tasks among 

different execution cores of the network processors. In addition to utilizing this 

information to decide on task distribution, we also make decisions about which 

modules should be replicated based on the analysis. Specifically, our contributions 

in this chapter are as follows:  

• We analyze the probability distribution of packet processing elements in a 

modular networking applications, 

• We present an intelligent methodology to allocate tasks among different 

processor cores of a chip multiprocessor,  

• We show experimental results investigating the impact of smart task 

allocation.   

Our main goal is to reduce the effect of the variation in the execution times 

of the packets. To be more precise, we would like to schedule the tasks such that 

the effects of variation will be minimized. The variation in the execution times is 

an inherent property of computers. This is particularly true for CMPs, where 

different cores are competing for a set of global resources (e.g., shared bus or the 

shared memory). In addition, there is data-dependent variation, i.e., depending on 
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the input the execution time may vary. For example, a loop might be executed for 

different number of iterations based on the input data. This uncertainty is even 

more pressing if the cores implement multithreading (as commonly done for most 

Network Processor architectures). The order of the thread selection and the order 

of the packet arrival are likely to have a significant impact on the time of 

completion for a single thread. This inherent variation in execution time is an 

important reason for the complexity of task distribution. Consider a distribution 

where TaskA is executed on ProcessorA and the results of this task is fed into 

TaskB, which is executing on ProcessorB. If the execution times of these tasks were 

constant, we could possibly arrange them such that the tasks allocated to 

ProcessorA and ProcessorB will be equal execution time and hence both processors 

will have 100% utilization. However, consider in this case, that TaskA is prolonged. 

In that case, ProcessorB will complete the execution of TaskB and will remain idle 

until TaskA is finished by ProcessorA. This will certainly reduce the overall 

utilization of the resources and hence will result in degradation of performance. 

Therefore, a task distribution scheme should consider the variation in execution 

times while making resource allocation decisions. In this chapter, we describe such 

a scheme.  

We discuss the modular property of networking applications in Section 3.6. 

Section 3.7 and 3.8 analyzes the implementation problems in networking processor 

domain and explores possible solution. Section 3.9 gives an overview of the 

applications used in our studies. Section 3.10 presents the statistical analysis of the 
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packet processing of modules in different networking applications. In Section 3.11, 

we discuss our novel task allocation scheme and different optimizations 

implemented on it. Section 3.12 presents the experimental results. In Section 3.13, 

we discuss the related work followed by concluding remarks in Section 3.14. 

3.6. Modularity in Network Applications 
The Network Processor (NP) designers utilize two important properties of 

networking applications. First, these applications consume and produce well-

defined data segments (network packets). This property leads the designers to 

utilize intelligent memory controllers specifically designed to move packet data 

to/from and within the processor. Secondly, for many of the networking 

applications, though not all, these packets can be processed independently. 

Therefore, there is a large amount of data level parallelism available in the 

applications. The designers take advantage of this fact with the use of 

multithreading and with multiple execution cores. Almost all of the NPs use a 

variation of multithreading and have several execution cores.  

Another important aspect that needs to be highlighted is the trend in the 

NP architectures. Each new NP generation employs more execution cores than 

their predecessors. Therefore, traditional communication structures between these 

execution cores (global buses or cross-bar based fabrics) become less effective. 

Many of the newer NPs employ special neighbor-to-neighbor communication 

(systolic array) or enhanced interconnection networks to reduce the need for 
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accessing global structures. In such systems, effective task allocation becomes 

particularly hard even for the most experienced programmers. 

Table 3-B. Important characteristics of representative Network Processor Designs: exec. 
cores is the number of execution cores, and parallelism technique is the technique(s) used 

for task or instruction level parallelism (MT: Multi-Threading, VLIW: Very-Long 
Instruction Word) in the execution cores 

Processor # of cores Parallelism technique

Agere PayloadPlus 3 MT, VLIW 
AMMC (MMC) nP7250 2 MT 

Bay Microsystems Chespeake 2 MT 
Broadcom BCM-1250 2 Superscalar 

Cavium Octeon 16 MT 
Cisco Toaster 16 VLIW 

EZChip ~40 MT 
Freescale C-5 16 MT 
Hifn 5NP4G 16 MT 

Intel IXP2800 16 MT 
Intel IXP1200 6 MT 

PMC-Sierra RM9000 2 Superscalar 
Vitesse (Sitera) IQ1200 4 MT 

Wintegra WinPath2 6 MT 
Xelerated Xelerator X11 360 VLIW, MT 

In the past, modular routers have gained much focus due to their ease of 

designing. CLICK [73] and Baker [75] are examples of domain specific languages 

designed for describing networking applications. We design our framework based 

on the CLICK framework. CLICK is a flexible, software modular architecture, 

which can build routers from fine-grained components. Each of these components, 

known as element, performs a simple task, such as decrementing an IP packet’s 

time-to-live (TTL) or IP header checking. They can easily be extended to do 

complicated tasks (IP lookup, NAT). To build a router configuration, the user 

chooses a collection of elements and connects them into a directed flow graph. The 

nodes being elements, the connections between those elements represent a 
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forwarding path. Click configuration scripts are written in a simple language with 

two important constructs: declarations create elements, and connections say how 

they should be connected.  

 

 

 

 

Figure 3.13. Click configuration for TTL decrement 

The Click language is wholly declarative. It specifies what elements to 

create and how they should be connected, not how to process packets procedurally. 

Router manipulation tools can take advantage of these properties to optimize 

router configurations offline or prove simple properties about them. The main 

goals behind the Click language are usability and extensibility. Figure 3.13 shows a 

Click diagram of a simple configuration that checks the TTL value of a packet. It 

forwards the packet if the TTL value is non-negative. Otherwise, the packet is 

discarded. More details about the programming model is available in the next 

section.  

3.7. Implementation Gap  
Click is a natural environment for describing packet processing applications. 

It is expected that networking applications should be mapped directly into a 

FromDevice(eth0) 

DecIPTTL ToDevice(eth1) 

Discard 
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network processor. However, there is currently a large gap between Click and the 

low level programming interface the network processors expose.  

Click proposes a simple yet powerful concept of push-and-pull 

communication between elements that communicate only via passing packets, 

coupled with the rich library of elements. This is a natural abstraction that aids 

designers in creating a functional description of their application. Note that, this is 

in stark contrast to the main concepts required to program a network processor. 

While implementing an application on this device, it is the programmer’s 

responsibility to effectively partition an application across the different execution 

cores, make use of special-purpose hardware, effectively arbitrate shared resources, 

and communicate with peripherals. This mismatch of concerns between the 

application model and target architecture is known as the implementation gap (see 

Figure 8). To facilitate bridging this gap, there is a need for an intermediate layer, 

called a programming model.  It presents a powerful abstraction of the 

underlying architecture while providing a natural way of describing applications. 

3.8. Implementation Gap Closure Approaches 
Different approaches have been proposed to solve the implementation gap. 

Works in this area can be categorized into four major areas: library of application 

components, programming language-based, refinement from formal models of 

computation (MOCs), and run-time systems. In this section, we describe and 

evaluate these alternatives.  
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Figure 3.14. Implementation Gap 

The library of application components approach exports a collection of 

manually designed blocks to the application programmer, who stitches these 

together to create his application. The advantage of such an approach is a better 

mapping to the underlying hardware, since the components are hand-coded. In 

addition, these components implement an abstraction that is natural for an 

application writer as the components are often similar to application model 

primitives. The disadvantage of this approach is the need to implement every 

element of the library by hand.  

If only a limited number of library elements are needed, this approach may 

be successful. However, in practice, we suspect a large number of elements are 

needed as application diversity grows. This problem is further compounded when a 

number of variants of each library element are needed. 
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A programming language approach utilizes a programming language that 

can be compiled to the target architecture. With this approach, a compiler needs 

to be written only once for the target architecture and all compiler optimizations 

can be applied to all applications that are written for the architecture. The 

principal difficulty with this approach is the requirement to compile to 

heterogeneous architectures with multiple processors, special-purpose hardware, 

numerous task-specific memories, and various buses. In addition, the programming 

abstraction required to effectively create a compiler for such architectures would 

likely force the programming language to include many architectural concepts that 

would be unnatural for the application programmer. Examples of this alternative 

include the numerous projects that have altered the C programming language by 

exposing architectural features [76, 77]. 

Another class of approaches uses refinement from formal models of 

computation (MOCs) to implement applications. Models of computation define 

formal semantics for communication and concurrency. Examples of common MOCs 

include Kahn Process Networks [78] and discrete-event. Because they require 

applications to be described in an MOC, these approaches are able to prove 

properties of the application (such as maximum queue sizes required and static 

schedules that satisfy timing constraints). This class of solutions also emphasizes 

application modeling and simulation [79]. The disadvantage of this method is that 

implementation on heterogeneous architectures is inefficient because most 

implementation paths require significant compiler support. As an example, 
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Edwards [80] has written a compiler to implement designs described in Esterel, a 

language that implements the synchronous/reactive MOC [13]. However, his work 

generates C code and relies on a C compiler for implementation on target 

architectures. In addition, the MOCs used by these approaches may not be natural 

design entry environments. For example POLIS requires all applications to be 

expressed in co-design finite state machines [79]. 

Run-time systems offer another category of solutions to the implementation 

gap. Run-time systems introduce dynamic operation (e.g. thread scheduling) that 

enables additional freedom in implementation. Dynamic operation can also be used 

to present the programmer with an abstraction of the underlying architecture (e.g. 

a view of infinite resources). While run-time systems are necessary for general-

purpose computation, for many data-oriented embedded applications (like data 

plane processing) they introduce additional overhead at run-time. Additionally, 

some ASIP architectures have included hardware constructs to subsume simple 

run-time system tasks like thread scheduling on the IXP1200 and inter-processor 

communication (ring buffers on the Intel IXP2800 [72]). Examples of this approach 

include VxWorks [81] and the programming interface for the Broadcom Calisto 

[82]. 

Based on the trade-offs between the above approaches, Shah et al. proposed 

a new programming model named as NP-Click [74]. It is an extended programming 

model based on Click Router and implemented on the Intel IXP1200. It is a 

combination of an efficient abstraction of the network processor with features of a 
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domain-specific language for networking. The result is a natural abstraction that 

enables programmers to quickly write efficient code. It facilitates the difficulties of 

programming network processors by taking advantage of hardware parallelism, 

arbitration of shared resources, and efficient data layout.  

We have used this programming model to perform a statistical task 

allocation in CMP style network processors. As discussed later, the inherent 

modularity of Click configurations facilitate my objective of optimized task 

allocation. We have used statistical data in conjunction with the modularity 

information to perform an effective task allocation among different execution cores 

of a network processor. 

3.9. Applications 
We explore the effectiveness of our task allocation techniques by using it to 

schedule four representative networking applications. This section describes the 

application we simulate.  

IPV4Router: We implement the data plane of an 8 port Fast Ethernet IP 

Version 4 router [83]. This application is based on the network processor 

benchmark specified by Tsai et al. [84].  A packet arriving on port P is to be 

examined and forwarded on a different port P’. We use a static lookup table to 

decide the next-hop location. It is determined through a longest prefix match 

(LPM) on the IPv4 destination address field. The packet header and payload are 
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checked for validity and packet header fields’ checksum and TTL are updated. 

Figure 35 shows this particular Click configuration tree.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.15. Click configuration tree for the IPV4Router application 

DRR: We extend the IP router demonstrated in the Click Modular Router 

project. The router that forwards unicast packets in nearly full compliance with 

the standards [83, 85, 86]. We introduce a queue which introduces packet by 

pulling from a set of infinite packet source using deficit round robin (DRR) 

scheduling [87]. 

RED: Random early detection is more likely to drop packets when there is 

network congestion; when there are many packets in the queue servicing that link. 

The RED element therefore queries router queue lengths when deciding whether to 

drop a packet. For this application, we extend the Click IP router to handle 

specialized routing tasks. Particularly, a complex IP router performs the following 

tasks: two parallel T1 links to a backbone, between which traffic should be load 
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balanced; division of traffic into two priority levels; fairness among the connections 

within each priority level; RED dropping driven by the total number of packets 

queued. Click's modular scheduling, queuing and dropping policy elements are used 

in this application. 

HOME_NODE: This application imitates an active home node in a network. 

The home node proxy-ARPs for the mobile node, decapsulates packets from the 

remote node, sending them onto the local network, and perform IP encapsulation 

for packets destined for the mobile node. It also ensures that packets generated by 

the address 1.0.0.10 are properly encapsulated.  

3.10. Probability Distribution of Packets 
In this section, we discuss the probability distribution of the packet 

processing time in a Click modular application. For the sake of conciseness, we 

describe the results for only the IPV4Router application in detail. The rest of the 

applications are analyzed in the same fashion and their results are summarized at 

the end of this section in Table 3-D. The simulation environment used to gather 

the statistics is described in Section 3.12.1. 

The IPV4Router application consists of 33 Click elements. It has five 

different basic elements – Strip(8), CheckIPHeader(8),StaticIPLookup(1), 

DropBroadcasts(8), DecIPTTL(8) [88]. Table 3-C shows a graphical representation 

of the Click description of the router and the relation between the basic elements 

(i.e., modules). 
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Table 3-C. Probability Distribution of IPV4Router Elements 
Processing time threshold 

 
Mean 
(µ) 

SD 
(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ

strip0  241.28 29.31 50 0.64 0.64 0.64 0 

strip1 232 22.11 34.19 33.33 0 0 0 

strip2 220.18 25.24 31.81 25 0 0 0 

strip3 216.05 19.87 35.06 20 3.63 0 0 

chkip0 713.01 59.77 50 0.64 0.64 0.64 0.64 

chkip1 695.22 31.48 34.63 33.33 0.86 0.43 0 

chkip2 695.49 25.09 27.59 25 0.97 0 0 

chkip3 694.63 21.77 20 20 2.33 0 0 

RtLkUp 336.56 266.88 20.03 20.03 10.01 0.03 0.03 

DBC0 212.30 21.18 34.32 28.57 1.29 0.18 0.18 

DBC1 197.42 18.51 51.29 26.94 25 0.64 0 

DBC2 210.45 26.50 18.39 2.16 0 0 0 

DBC3 205.47 17.40 32.83 14.28 14.28 0 0 

DcTTL0 317.78 20.34 26.45 12.98 2.09 0 0 

DcTTL1 320.33 21.10 35.71 26.62 0 0 0 

DcTTL2 315.96 19.6 20.99 17.09 1.29 0 0 

DcTTL3 314.77 18.26 19.85 14.28 0.55 0 0 

We execute the configuration for 5000 packets. During this execution, we 

record the amount of time spent by each packet in different elements of the Click 

router. Using these statistics, we find the mean and the standard deviation of the 

execution times. Table 3-C presents the results for the 17 elements that have the 

longest execution times in the configuration. Once we extract the mean (µ) and 

standard deviation (σ) of processing time by each of the element, we compare 

them against the data recorded for each packet traversed through it. The columns 

in the Table 3-C record the percentage of packets that couldn’t be processed 

within the slack given by the expression (µ+k.σ), where k is a positive constant. 

This statistics is important for us, because it can be used as estimation for how the 

variation will effect the utilization. In other words, if we pipeline the tasks 

according to the mean only, a packet that takes longer than µ cycles to execute 
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will clog the pipeline and cause the utilization to decrease in the proceeding 

processor. The results indicate that variation can indeed become an important 

bottleneck. Particularly, if we only consider the average execution time in task 

distribution, 32% of the packets on average will not finished within the expected 

time and will likely cause performance degradation. In Section 3.12.2, we analyze 

the applications and present experimental results showing that for an 8 processor 

Network Processor, this variation can cause up to 23% underutilization of the 

processors.  

Table 3-D. Probability Distribution of Application Elements 

Processing time threshold 
 Mean(µ) SD(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ 

DRR 
Cl1 351.20 24.13 55.35 9.81 0.88 0.13 0.13 

DRRelem 17032.70 76778.25 45.23 0.13 0.13 0.13 0.13 
IPCheck 31.66 38.14 13.82 0.25 0.25 0.25 0.00 
RtLkUp 349.70 220.44 22.86 22.86 0.63 0.13 0.13 
ChkPnt 19552.00 46879.27 7.64 7.64 7.64 7.64 0.33 
FixIP 219.20 14.64 34.83 25.87 0.00 0.00 0.00 
Frag 183.94 18.11 53.23 23.38 4.48 0.00 0.00 

RED 
RED 834.80 142.74 39.33 6.78 6.61 5.72 0.06 

StripHdr 204.00 9.89 25.08 9.17 7.17 5.08 2.33 
GetIP 379.50 15.89 20.58 9.17 7.42 2.00 0.08 
Strip2 209.00 13.60 23.83 16.00 9.67 0.17 0.00 

IPEncap 469.70 17.65 33.50 15.50 3.00 0.17 0.17 
SetIP 208.00 14.34 35.17 19.67 2.17 0.17 0.17 

PrioSche 286.50 8.27 33.67 8.06 6.11 6.11 0.28 
HOME_NODE 

Classifier 319.98 30.02 59.50 8.58 1.19 0.11 0.08 
Strip1 213.90 9.96 26.25 7.83 2.75 1.08 0.33 

CheckIP 695.80 20.31 41.67 12.50 0.08 0.08 0.08 
StripHdr 225.70 10.15 32.58 11.67 1.58 0.08 0.08 
GetIP 386.50 40.60 59.92 17.42 0.83 0.08 0.08 
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We analyze all the applications following the identical procedure. Table 3-D 

summarizes the statistical data obtained from different elements. Due to their 

similar nature, we report the data for a few representative elements in each 

application. Note that, the mean (µ) and standard deviation (σ) for different 

instances of the same element vary depending on the packet contents. Similar to 

the IPV4Router application, we see a large variation in the execution times of the 

modules for all the applications.  

3.10.2 Aggregate Probability Distribution  

Although we have seen a variation in the execution time of individual 

elements, the variations of different modules may cancel each other once they are 

formed into “stages” that will be executed in different processors. For example, if 

element1 and element2 are scheduled in a processor, if the execution time of 

element1 is prolonged while the execution time of element2 shortened, the overall 

variation in the execution time of the processor may remain constant.  Therefore, 

we also analyzed the variation in the aggregate task execution. We divide the 

complete configuration tree into different stages. The boundary decision for each 

stage is made based on the data obtained from the probability distribution of 

individual elements. We use the expected execution time of the modules and form 

n stages that are of approximately equal size. Subsequently, we perform a 

probability analysis of packet processing in each of these stages. Table 3-E 

presents the probability distribution of the IPV4Router application when the 

processing path is divided into 4 stages. Note that, the selection of the number of 
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the stages is arbitrary, but we must highlight that the results are similar for 

different number of stages. The results indicate that the standard deviation for the 

aggregate elements is similar to the ones of the individual elements. Particularly, 

on average 29% of the packets will cause an execution time exceeding the mean. 

Table 3-E. Probability Distribution of IPV4Router Stages 

Processing time threshold Stages 
 

Mean 
(µ) 

SD 
(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ 

Stage0 227.38 24.14 35.06 20.00 3.64 0.00 0.00 

Stage1 691.18 30.48 23.19 14.29 1.86 0.08 0.00 

Stage2 500.43 29.52 27.18 24.31 5.66 0.11 0.11 

Stage3 314.72 20.33 27.78 23.14 7.14 0.28 0.00 

3.11. Statistical Task Allocation in NPs 
In this section we describe how the statistical analysis is utilized during the 

assignment of tasks to execution cores (i.e., task allocation). The main objective of 

allocating tasks is to maximize the utilization of different execution cores of the 

network processor. This, in return, results in an increase in the throughput 

supported by the processor. In the following, we first describe our target 

architecture. Then, we present two module distribution schemes. The first assigns 

the tasks to the processors by simply considering the average execution time. The 

second one utilizes the standard deviation in addition to the average. If the 

number of execution cores exceeds the number of modules in an application, the 

modules need to be replicated. Section 6.3 describes how this replication can be 

performed effectively by taking advantage of the statistical information.  
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3.11.1 Architecture Description  

In this work, we consider a systolic array architecture. In this architecture, 

the execution cores are arranged in a pipelined fashion. In other words, processors 

are logically aligned in a single dimension and each processor is connected to its 

left and right neighbors. In addition, for the communication patterns, which 

cannot be satisfied by the local links, a shared bus that connects all execution 

cores is utilized. Although generic, this architecture represents most of the existing 

Network Processor architectures. Our goal is to develop an automated method to 

distribute the tasks in an application uniformly over the cores. Once an execution 

core performs the task allocated to it, it forwards the processed packet as well as 

the necessary data to the next core.  

3.11.2 Module Distribution 

In this section, we describe how tasks or modules are distributed among 

execution cores. Note that, each Click element represents a conceptually simple 

computation. A module is defined as a subset of Click elements used in an 

application.  

The Click configuration tree describes the flow of the application. When we 

combine the statistical data of individual Click elements along with the Click 

configuration tree, we have a tree structure depicting the estimated delay of a 

single packet processing. The overall flow of the processing task can be divided 

into stages. The objective while dividing the application into stages is to form a 

group of stages with equal expected delay. Note that, in our work a stage and a 
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module is synonymous. From this point onward, we would call each stage a 

module. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16. Illustration of module distribution in IPV4Router application 

We utilize the average processing time of each element to form the modules. 

Assuming the tasks performed by each module is independent of each other; the 

average delay of each module is expected to be the sum of average processing time 

the Click elements. For a typical networking application, any particular packet 

would traverse one of the many alternate routes from start to end. We divide each 

of those paths into equal number of segments. The elements used in a particular 

stage of all the alternative paths form a single module. Note that, for a particular 

packet, only a subset of the all the elements in a module would be used.  

To perform the module distribution, we use a three-step algorithm. In the 

first step, the total execution time of a packet is found. In the second step, the 
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stages are formed. In the third step, we perform local optimization to improve the 

task distribution. The algorithm starts from the root(s) of the Click configuration 

tree and traverses towards the leaf(s) of it. Each element is first assigned a weight 

equal to its expected mean execution time. Then, using a depth-first-search 

scheme, the algorithm assigns total weights to each element. Total weight of a 

child is equal to the sum of the total weight and the mean execution time of its 

parent. The selection of the child that will be traversed next is performed using 

the execution statistics. Particularly, the processing of a parent is followed by the 

processing of the most frequently executed child. This way, we follow the path 

that a packet would follow if there were no exceptions. If an element is visited 

before, its total weight will not be changed. The maximum total weight among the 

leaf nodes is selected as the execution time of a packet. Then, the maximum 

execution time is divided into the number of stages required (for a 4-core 

processors, the number of stages is equal to 4). This gives us the expected 

execution time for each stage. In the second stage of the algorithm, we again start 

from the root(s). Particularly, all the root(s) are first placed on stage 0. Then, the 

children of the root(s) are one by one added to the current stage until the total 

expected execution time of the stage reaches the average execution time of a 

packet calculated in step 1 of the algorithm. Once the average time is reached, a 

new stage is started. This process continues until all the elements are contained in 

a stage. Once this step is completed, we perform a local optimization stage where 

all the stage boundaries are considered. If moving an element from one stage to the 
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other (the move can be from stage i to i+1 or vice versa) reduces the overall 

variance in the total execution times of the stages, then the location of the element 

is changed. We traverse the stages until no element can be moved. This initial task 

distribution scheme is called the Base Task Distribution (BTD). Figure 3.16 shows 

BTD scheme results on the IPV4Router application. 

The statistical data obtained for each Click element shows on average 

approximately 30% of the data packets couldn’t be processed within the mean 

processing time (µ). A slack of the form k.σ in the estimated processing time helps 

a particular element to process a packet within the estimated delay. Therefore, 

instead of forming the stages using the mean processing time (µ), we form the 

stages using µ + k.σ as the expected execution time. In other words, the weight of 

each tree node (element) is set to µ + k.σ. This scheme is called Extended Task 

Distribution (ETD). The intuition behind ETD is to allow each element an 

extended slack to process a packet. By allowing an extended processing delay, we 

expect more packets to be processed within the expected processing time, 

improving the resource utilization in the Network Processor. We have performed a 

number of experiments with varying the k value. Our experiments reveal that the 

optimal point across the applications is achieved for k = 3. The detailed 

experiments are described in Section 3.12. 

3.11.3 Selective Module Replication    

It is normal to encounter a situation where the number of different modules 

available in an application is less than the available execution core. In such cases, 
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we replicate the modules to parallelize the packet processing for that particular 

module. This way, the number of total modules is increased and the task 

distribution can be performed more evenly. However, instead of a naive replication 

scheme, we select the modules with the highest mean processing times. This 

replication scheme is called Selective Replication (SR). The intuition behind SR is 

to allow a module run faster if it is one of the slower (or longer) ones. Once we 

replicate a module, the two new modules are assigned a weight equal to the half of 

the weight of the original module. This replication is continued until we generate 

enough modules for the given number of processors.  

The Click elements can perform a variety of unit task. It can do simple 

computations like calculating checksum of a packet. At the same time, a single 

element can be used to implement DRR scheduling [87] . As a result, the average 

processing time for each element varies over a long range. In a typical application, 

we can expect a module to contain elements, which are used in two alternate 

routes and one of them has a larger average processing time than the other. Under 

the SR technique, we would replicate both the elements in execution cores. 

Whenever a packet traverses a ROUTE involving the element with smaller 

processing delay, the execution core would sit idle for most of its time. This would 

reduce the utilization of the core that directly contradicts our objective for task 

allocation. To counter this problem, we propose the Extended Selective Replication 

(ESR). In ESR, we select the elements with longer average processing time in a 

module and replicate them over more than one execution core. The parallelization 
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of the longer module reduces the total processing time of the module. As a result, 

the utilization of the execution cores performing the module task increases. 

Additionally, we consider an extended slack version of the SER technique where 

we allow an extra slack of k.σ for each module. We call this technique as the 

Extended Selective Replication (ESR).  

3.11.4 Discussion  

We must note that our overall algorithm is based on profiling information. 

In general, the success of a profiling scheme is largely dependent on the correct 

selection of the input data sets. However, our experience with the networking 

applications studied in this research work shows that they exhibit very similar 

behavior even with different input packet traces. Particularly, we have tested the 

four applications using three different sets of packets from the NLANR traces. For 

the three input sets, the mean execution times and the standard deviation for the 

four applications varied by less than 3%. On the other hand, our experiments 

shows that the behavior of the applications was very much dependant on the 

“internal” data structures. For example, a change in the routing table structures 

used in IPV4Router application has a significant impact on the mean execution 

time of a number of elements. Therefore, to achieve effective task distribution, a 

user needs to carefully select the internal structures that will represent the working 

conditions of an application.   
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3.12. Experiments  

3.12.1 Experimental Setup 

The SimpleScalar/ARM version 3.0 simulator [89] is used to evaluate the 

proposed techniques. We modified the processor configuration to model a processor 

similar to execution cores in a variety of NP architectures. We compiled the Click 

router to run in the user level mode. It is modified to run in collaboration with the 

SimpleScalar simulator. The SimpleScalar simulator is modified to record the 

behavior of every packet within a configuration. With the use of marker elements 

within the configuration, we track the every packet within a click configuration 

and record the performance of Click elements processing the packets. We simulate 

four representative networking applications as discussed in Section 3.9.  

We perform two sets of experiments. First, we analyze the proposed task 

allocation scheme from the throughput perspective. Particularly, we measure the 

throughput for increasing number of processors. In the second set of experiments, 

we study the effectiveness of the proposed optimizations on the task allocation. We 

measure the resource (i.e., processor) utilization of the studied applications with 

BTD, ETD, SR, and ESR schemes.  

3.12.2 Throughput Analysis 

We have analyzed the system throughput under the task distribution and 

the replication schemes. For the processor with 2, 4, and 8 cores, we measure the 

average throughput of the system. Figure 3.17 through Figure 3.20 describe the 

relative throughput of the Multicore systems for the experimental applications. 
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The figures present the results for 4 variations as described in Section 3.11: Base 

Task Distribution (BTD), Extended Task Distribution (ETD), Selective 

Replication (SR), and Extended Selective Replication (ESR). Note that the 

distribution of stages in SR is based on BTD and ESR uses ETD strategy to place 

the modules into processor cores.  

As we describe in Sections 3.11.2 and 3.11.3, ESR and ETD schemes use µ 

+ kσ as the expected processing time. Therefore, we need to select a k value. Our 

tests with different k values showed that k=3 gives the best results overall. For 

small k values, the stages for ESR and ETD were identical to those of SR and 

BTD, respectively. For larger k values, on the other hand, the elements with large 

variance were assigned to single cores (e.g, stages formed by only such elements). 

If the execution time for a packet is close to or smaller than the mean processing 

time, this particular core is underutilized, reducing overall utilization. The optimal 

point is achieved when both the producer and the consumer are utilized fully. The 

selection of k=3 is the closest case to this scenario.  

Figure 3.17 through Figure 3.20 present relative performance achieved with 

respect to single core execution of the original application after applying the 

proposed schemes. We see that task distribution is highly scalable for all the 

schemes. On average, for 2, 4, and 8 processors,  BTD scheme achieves a relative 

throughput of 1.78, 3.25, and 6.15, respectively. The best throughput improvement 

is observed for DRR application. The reason for this behavior lies in the unique 

nature of this application. DRR contains two elements with large execution times. 
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Hence, we can achieve close to perfect task distribution for two processors. With 

SR schemes, the relative throughput for 2, 4, and 8 processors are 1.84, 3.40, and 

6.42, respectively. For all the applications, we can see that SR performs better 

than BTD scheme. Due to replication of the processing elements that takes longer 

time, SR scheme improves the overall utilization of the processing cores. We can 

notice the improvement for higher number of cores (4 or 8) as that allows us for 

intelligent allocation of resources. The best performance is observed for the 

IPv4Router application. It has a relative throughput of 6.55 for 8 processors. As 

shown in Table 2, the IPv4Router application has a large variation of processing 

time for different elements. This variation gets benefited by the SR scheme to have 

even processing time for each pipelined stage and subsequently resulting high 

throughput scalability.  

The extended version of BTD and SR includes an extra slack of 3σ to the 

expected processing time of the elements while task allocation. As shown in the 

figures, this results in a throughput improvement for almost all the cases. The 

extended schemes perform particularly well for the RED application. For ESR, the 

best performance is observed for the 8-core configuration, when the throughput 

reaches 7, a 12.5% improvement over BTD. The reason for this improvement lies 

in the nature of this application. RED consists of a number of elements with mean 

processing times close to each other. Therefore, by considering the standard 

deviation in the execution times, we see that the stage formations can be 

significantly changed.  
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Figure 3.17. Processor throughput for DRR application 
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Figure 3.18. Processor throughput for RED application 
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Figure 3.19. Processor throughput for Home_Node application 
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Figure 3.20. Processor Throughput in Route application 
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For other applications that are dominated by a few elements, consideration 

of the extended processing times usually does not cause a significant change in the 

stage formation. This is especially true for the DRR application, where the 

majority of the processing time is dominated by two modules. Moreover, ETD 

scheme always improves the throughput for 8 processor configurations. On 

average, for all four applications, it improves the throughput by 4.4%. On the 

other hand, the ESR scheme achieves a relative throughput of 1.90, 3.49, 6.74 for 

2, 4, and 8 core processors, respectively, aggregated over all four applications. 

Henceforth, the combination of Selective Replication and Extended Slack results 

significant throughput improvement. On average, it improves the throughput by 

6.4%, 8.4%, and 9.9% for 2, 4, and 8 processors as compared to the BTD scheme. 

We must note that the overall performance improvement achieved by our 

proposed schemes is synergistic. While the consideration of variance (ETD) and 

replication (SR) improve the performance by 4.4% and 4.3%, respectively, their 

combination (ESR) provides 9.9% improvement. 

3.12.3 Resource Utilization Analysis 

In the second set of experiments, we measure the average utilization of the 

cores. Figure 3.21 describes the mean utilization percentage of the cores for the 

DRR application. The figure presents the results for 4 variations as described in 

Section 5: the Base Task Distribution (BTD), the Extended Task Distribution 

(ETD), the Selective Replication (SR), and the Extended Selective Replication 

(ESR). The other applications follow the similar trends. 
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Figure 3.21. Resource Utilization in DRR application 

For almost all the applications, we see that the ESR scheme gives the best 

utilization. In general, we see that both of our optimizations (replication and 

extended processing time consideration) increase the utilization. Particularly, SR 

almost always performs better than the BTD. A larger number of elements are 

useful for achieving a higher utilization. With the larger number of elements, we 

can form stages that are close to each other in the execution times. The only 

exception to this rule is the DRR application executed on 2 cores. For this 

application, SR and BTD provide the same throughput. The reason for this 

behavior lies in the unique property of the DRR application. DRR contains two 

elements with large execution times. Hence, without replication, we can achieve 

close to perfect task distribution. Particularly, DRR achieves the best utilization 

for 2-core processor with 95%, which cannot be improved with the SR scheme. In 

addition, we see that the ETD and ESR schemes always perform better than the 

BTD and SR schemes, respectively. We observe a similar trend for the remaining 

three applications. Overall, the ESR scheme achieves the best utilization with 95%, 
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89%, and 84% on average for the processors with 2, 4, and 8 cores, respectively, 

aggregated over all four applications. The average utilization for the BTD scheme, 

on the other hand, is 88%, 81%, and 77% for the processors with 2, 4, and 8 cores, 

respectively.  

3.13. Related Work on Task Allocation 
Task allocation has been an active research area in a number of domains. In 

behavioral synthesis research, the objective is to assign operations to hardware and 

optimize the usage of storage and communication paths [90]. While analogous to 

the problem faced here, these approaches are best suited for synthesizing datapath 

elements for small computational kernels. In the multiprocessor domain, Chekuri 

et al. [91] and Shachnai [92] proposed approximation algorithms to solve the 

problem for general multiprocessor models. However, they fail to consider practical 

resource constraints and do not take into account thread and storage limitations, 

which are critical factors that affect the quality of the mapping to heterogeneous 

ASIP architectures.  

We have used Click infrastructure for our experimentation. It is the most 

relevant and established academic C++ programming model and environment for 

building packet processing applications on a single, general-purpose, processor. 

Shangri-La [93] is a work that matches our interest pretty closely. Shangri-La is 

based on Baker [75] that bears many similarities to Click, especially in regards to 

its modeling of communication channels (CCs). However, Their approach is 

significantly different than ours and we specifically concentrate on mapping the 
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tasks to cores. The optimizations presented in their scheme do not consider the 

variations observed in the packet execution. Due to architectural and technology 

differences, it is difficult to make any performance comparison between our system 

and theirs. Gordon et. al. [94] proposed schemes that employs task distribution 

among different cores similar to ours. The novelty of our scheme lies on the fact 

that the task distribution is based on the statistical properties of the network 

packets. 

Plishker [95] exploited the flexible framework of ILP to generate optimal 

solutions to the mapping problem. Such techniques are usually computationally 

expensive. Srinivasan et al. [96] considered the scheduling problem for the Intel 

IXP1200 and presented a theoretical framework in order to provide service 

guarantees to applications. However, their methodology was not tested with real 

network applications.  

A number of programming environments were proposed for NPs. NP-Click 

[74] is an extended programming model based on Click Router. It is implemented 

on the Intel IXP1200 architecture. Memik and Mangione-Smith [97] proposed a 

programming environment that considers the task allocation. However, none of 

these techniques used the variation in execution time to optimize the allocation 

schemes. Datar and Franklin [98] proposed greedy-pipe algorithm to solve 

problems associated with determining optimal application task assignments for 

pipelines in CMP based NP. However, their study is performance oriented and the 

execution core utilization has not done by them.  
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3.14. Conclusions  
In this chapter, we have discussed the application of holistic architecture 

approach at the application level of abstraction. First, we proposed the design and 

utilization of clumsy packet processors. Clumsy packet processors use the 

robustness available in the networking applications to increase the efficiency of 

hardware structures while increasing their fault probabilities. Overall, this results 

in better execution efficiency and reduced energy consumption. Particularly, we 

have shown how the access delay and energy consumption of a data cache can be 

reduced while increasing the hardware faults during accesses. We developed a 

realistic model that estimates the fault probability of the cache for a given clock 

frequency. Thus, a clumsy processor can increase the clock frequency of its data 

cache and reduce its energy consumption. We have also defined various 

application-specific error metrics that is used to measure the “fallibility” of the 

processor. Particularly, we have proposed the energy-delay-fallibility product 

metric, which can be used to measure the trade off between the energy, execution 

time, and the error probability. We have presented a scheme to adapt the 

frequency of the data cache to adjust to the application requirements. Our 

simulations reveal that there is a significant gap between the specifications of the 

circuit designer and the optimal clock frequency in terms of energy-delay2-

fallibility2 product.  

We have also presented a method for allocating tasks in Network 

Processors. The task allocation scheme utilized the modular nature of networking 
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applications. Variation in execution time is an inherent property of processing. The 

goal is to estimate this variation for different parts of the code and perform the 

task allocation accordingly. Our scheme assigns a module to each execution core of 

the Network Processor. The variance in packet processing time is used to allow 

extra slack in each module. In addition, we present two schemes to replicate 

modules if the number of modules in the application is low. The first one (SR) 

simply replicates the modules based on their execution time, whereas the second 

one (ESR) considers the variation in execution time of the modules when making 

replication decisions. Results reveal several important characteristics of our 

proposed schemes. First, they show that the base task distribution scheme achieves 

high levels of scalability. In addition, the extended processing time and replication 

scheme help to improve the performance. 
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CHAPTER 4  

USER-DIRECTED POWER MANAGEMENT 

The increasing importance of low-power VLSI design has resulted in 

numerous power-reduction techniques in circuits, architectures, and operating 

systems. Energy consumption has traditionally been one of the primary design 

criteria for mobile systems.  It determines battery life and is therefore of great 

importance to end-users of mobile systems, a huge and growing population.  In 

line-powered systems, on the other hand, energy consumption is important due to 

its impact on power dissipation, which affects cost and noise.  As manufacturing 

technologies are enhanced, more and more transistors can be packed into a given 

area, increasing the power density. As a result, in high-end microprocessors, the 

chip temperature during execution is elevated, affecting performance, reliability, 

and integrated circuit (IC) lifetime.  

Dynamic Voltage and Frequency Scaling (DVFS) is one of the most 

commonly used power reduction techniques in high-performance processors and is 

the most important OS power management tool. DVFS is generally implemented 

in the kernel and it varies the frequency and voltage of a microprocessor in real-
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time according to processing needs. Although there are different versions of DVFS, 

at its core DVFS adapts power consumption and performance to the current 

workload of the CPU. Specifically, existing DVFS techniques in high-performance 

processors select an operating point (CPU frequency and voltage) based on the 

utilization of the processor. While this approach can integrate information 

available to the OS kernel, such control is pessimistic: 

• Existing DVFS techniques are pessimistic about the user. Indeed, they 

ignore the user, assuming that CPU utilization or the OS events prompting it 

are sufficient proxies. A high CPU utilization simply leads to a high frequency 

and high voltage, regardless of the user’s satisfaction or expectation of 

performance. 

• Existing DVFS techniques are pessimistic about the CPU. They assume 

worst-case manufacturing process variation and operating temperature by 

basing their policies on loose worst-case bounds given by the processor 

manufacturer. A voltage level for each frequency is set such that even the 

slowest shipped processor of a given generation will be stable at the highest 

specified temperature. 

In response to these observations, on which we elaborate in Sections 4.1 

and 4.2, we have developed two new power management techniques that can be 

readily employed independently or together. This work is done in collaboration 
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with Bin Lin who is a graduate student interested in Systems research. In 

particular, we introduce the following techniques. 

User-Driven Frequency Scaling (UDFS) uses direct user feedback to drive 

an online control algorithm that determines the processor frequency (Section 4.1). 

Processor frequency has strong effects on power consumption and temperature, 

both directly and also indirectly through the need for higher voltages at higher 

frequencies. The choice of frequency is directly visible to the end-user as it 

determines the performance he sees. There is considerable variation among users 

with respect to the satisfactory performance level for a given workload mix. UDFS 

exploits this variation to customize frequency control policies dynamically to the 

individual user. Unlike previous work (Section 4.5), this approach employs direct 

feedback from the user during ordinary use of the machine. 

Process-Driven Voltage Scaling (PDVS) creates a custom mapping from 

frequency and temperature to the minimum voltage needed for CPU stability 

(Section 4.2), taking advantage of process variation. This mapping is then used 

online to choose the operating voltage by taking into account the current operating 

temperature and frequency. Researchers have shown that process variation causes 

IC speed to vary up to 30% [99]. Hence, using a single supply voltage setting does 

not exploit the variation in timing present among processors. We take advantage 

of this variation via a customization process that determines the slack of the 

individual processor, as well as its dependence on operating temperature. This 
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offline measurement is used online to dynamically set voltage based on frequency 

and temperature. 

4.0.1 Experimental Setup 

Our experiments were done using an IBM Thinkpad T43p with a 2.13 GHz 

Pentium M-770 CPU and 1 GB memory running Microsoft Windows XP 

Professional SP2. Although eight different frequency levels can be set on the 

Pentium M-770 processor, only six can be used due to limitations in the SpeedStep 

technology. 

In all of our studies, we make use of three application tasks, some of which 

are CPU intensive and some of which frequently block while waiting for user 

input:   

• Creating a presentation using Microsoft PowerPoint 2003 while listening to 

background music using Windows Media Player 10. The user duplicates a 

presentation consisting of complex diagrams involving drawing and labeling, 

starting from a hard copy of a sample presentation. 

• Watching a 3D Shockwave animation using the Microsoft Internet Explorer 

web browser. The user watches the animation and is encouraged to press the 

number keys to change the camera’s viewpoint. The animation was stored 

locally. Shockwave options were configured so that rendering was done entirely 

in software on the CPU. 
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• Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular and widely-

used First Person Shooter game. There were no constraints on user gameplay.  

In the following sections, we describe the exact durations of these tasks for 

each user study and additional tasks the user was asked to undertake. In general, 

our user studies are double-blind, randomized, and intervention-based. The default 

Windows DVFS scheme is used as the control. We developed a user pool by 

advertising our studies within a private university that has many non-engineering 

departments. We selected a random group of users from among those who 

responded to our advertisement. While many of the selected users were CS, CE, or 

EE graduate students, our users included staff members and undergraduates from 

the humanities. Each user was paid $15 for participating. Our studies ranged from 

number of users n=8 to n=20, as described in the material below. 

4.1. User-Driven Frequency Scaling 
Current DVFS techniques are pessimistic about the user, which leads them 

to often use higher frequencies than necessary for satisfactory performance. In this 

section, we elaborate on this pessimism and then explain our response to it: user-

driven frequency scaling (UDFS). Evaluations of UDFS algorithms are given in 

Section 4.3.1. 

4.1.1 Pessimism about the user 

Current software that drives DVFS is pessimistic about the individual 

user’s reaction to the slowdown that may occur when CPU frequency is reduced. 
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Typically, the frequency is tightly tied to CPU usage. A burst of computation due 

to, for example, a mouse or keyboard event brings utilization quickly up to 100% 

and drives frequency, voltage, temperature, and power consumption up along with 

it. CPU-intensive applications also cause an almost instant increase in operating 

frequency and voltage. 

In both cases, the CPU utilization (or OS events that drive it) is 

functioning as a proxy for user comfort. Is it a good proxy?  To find out, we 

conducted a small (n=8) randomized user study, comparing four processor 

frequency strategies including dynamic, static low frequency (1.06 GHz), static 

medium frequency (1.33 GHz), as well as static high frequency (1.86 GHz). The 

dynamic strategy is the default DVFS policy used in Windows XP Professional. 

Note that the processor maximum frequency is 2.13 GHz. We allowed the users to 

acclimate to the full speed performance of the machine and its applications for 4 

minutes and then carry out the tasks described in Section 4.0.1, with the following 

durations:   

- PowerPoint (4 minutes in total, 1 minute per strategy)  

- Shockwave (80 seconds in total, 20 seconds per strategy)  

- FIFA (4 minutes in total, 1 minute per strategy)  

Users verbally ranked their experiences after each task / strategy pair on a 

scale of 1 (discomfort) to 10 (very comfortable). Note that for each application and 

user, strategies were tested in random order. 
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Figure 4.1 illustrates the results of the study in the form of overlapped 

histograms of the participants’ reported comfort level for each of four strategies. 

Consider Figure 4.1(a), which shows results for the PowerPoint task. The 

horizontal axis displays the range of comfort levels allowed in the study and the 

vertical axis displays the count of the number of times that level was reported. 

The other graphs are similar. 

User comfort with any given strategy is highly dependent on the 

application. For PowerPoint, the strategies are indistinguishable in their 

effectiveness. For this task, we could simply set the frequency statically to a very 

low value and never change it, presumably saving power. For animation, a higher 

static level is preferred but the medium and high frequencies are statistically 

indistinguishable from the dynamic strategy despite not using as high a frequency. 

For the game, the high static setting is needed to match the satisfaction level of 

the dynamic strategy. However, that setting does not use the highest possible 

frequency, which was used by the dynamic strategy throughout the experiment. 

Comfort with a given strategy is strongly user-dependent, i.e., it is 

important to note that for any particular strategy, there is considerable spread in 

the reported comfort levels. In addition to the power-specific results just described, 

we note that Gupta et al. [100] and Lin et al. [101] have also demonstrated a high 

variation in user tolerance for performance in other contexts. Our dynamic policy 

automatically adapts to different users and applications. Hence, it can reduce 

power consumption while still achieving high user satisfaction. 
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Figure 4.1. User pessimism. 

(a) PowerPoint

(b) 3D Animation

(c) FIFA Game
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4.1.2 Technique 

To implement user-driven frequency scaling, we have built a system that 

consists of client software that runs as a Windows toolbar task as well as software 

that implements CPU frequency and temperature monitoring. In the client, the 

user can express discomfort at any time by pressing the F11 key (the use of other 

keys or controls can be configured). These events drive the UDFS algorithm. The 

algorithm in turn uses the Windows API to control CPU frequency. We monitor 

the CPU frequency using Windows Performance Counter and Log [102] and 

temperature using CPUCool [103]. 

It is important to note that a simple strategy that selects a static frequency 

for an application (and/or for a user) is inadequate for three reasons. First, each 

user will be satisfied with a different level of performance for each application. 

Finding these levels statically would be extremely time consuming. Second, typical 

users multitask. Capturing the effects of multiple applications would necessitate 

examining the power set of the application set for each individual user, resulting in 

a combinatoric explosion in the offline work to be done. Finally, even when a user 

is working with a single application, the behavior of the application and the 

expected performance varies over time. Applications go through phases, each with 

potentially different computational requirements. In addition, the user’s expected 

performance is also likely to change over time as the user’s priorities shift. For 

these reasons, a frequency scaling algorithm should dynamically adjust to the 

individual user’s needs. 
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Responding to these observations, we designed algorithms that employ user 

experience feedback indicated via button presses. 

4..1.2.1 UDFS1 Algorithm 

UDFS1 is an adaptive algorithm that can be viewed as an extension/variant 

of the TCP congestion control algorithm. The TCP congestion control 

algorithm [104-106] is designed to adapt the send rate dynamically to the available 

bandwidth in the path. A congestion event corresponds to a user button press, 

send rate corresponds (inversely) to CPU frequency, and TCP acknowledgments 

correspond to the passage of time. 

UDFS1 has two state variables: r, the current control value (CPU 

frequency, the smaller the value, the higher the frequency.) and rt (the current 

threshold, integer value). Adaptation is controlled by three constant parameters: ρ�, 

the rate of increase, α�=f(�ρ), the slow start speed, and β�=g(ρ�), the additive 

increase speed. Like TCP, UDFS1 operates in three modes, as described below. 

Slow Start (Exponential Increase): If r < rt, we increase r 

exponentially fast with time (e.g. r ∞ 2αt). Note that frequency settings for most 

processors are quantized and thus the actual frequency changes abruptly upon 

crossing quantization levels. 

User event avoidance (Additive Increase): If no user feedback is 

received and r ≥ rt,, r increases linearly with time, r�� ∞ βt. 
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User event (Multiplicative Decrease): When the user expresses 

discomfort at level r we immediately set rt=rt-1 and set r to the initial (highest) 

frequency. 

This behavior is virtually identical to that of TCP Reno, except for the 

more aggressive setting of the threshold. 

Unlike TCP Reno[106] , we also control ρ�, the key parameter that controls 

the rate of exponential and linear increase from button press to button press. In 

particular, for every user event, we update � as follows:  

)1(1
AVI

AVIi
ii T

TT −
×+=+ γρρ  

where Ti is the latest inter-arrival time between user events. TAVI is the 

target mean inter-arrival time between user events, as currently preset by us. � 

controls the sensitivity to the feedback. 

We set our constant parameters (TAVI=120, α�=1.5, β�=0.8, γ=1.5) based 

on the experience of two of the authors using the system. These parameters were 

subsequently used when conducting a user study to evaluate the system 

(Section 4.3). Ideally, we would empirically evaluate the sensitivity of UDFS1 

performance to these parameters. However, it is important to note that any such 

study would require having real users in the loop, and thus would be quite slow. 

Testing five values of each parameter on 20 users would require 312 days (based 

on 8 users/day and 45 minutes/user). For this reason, we decided to choose the 
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parameters based on qualitative evaluation by the authors and then “close the 

loop” by evaluating the whole system with the choices. 
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(a) UDFS1 Frequency Traces 
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(a) UDFS2 Frequency Traces 

 
Figure 4.2. The frequency for UDFS schemes during FIFA game for a 

representative user. 
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Figure 4.2(a) illustrates the execution of the UDFS1 and Windows DVFS 

algorithms for a typical user during the FIFA game task. Note that Windows 

DVFS causes the system to run at the highest frequency during the whole 

execution period except the first few seconds. On the other hand, the UDFS1 

scheme causes the processor frequency to increase only when the user expresses 

discomfort (by pressing F11). Otherwise, it slowly decreases. 

4..1.2.2 UDFS2 Algorithm 

UDFS2 tries to find the lowest frequency at which the user feels 

comfortable and then stabilize there. For each frequency level possible in the 

processor, we assign an interval ti, the time for the algorithm to stay at that level. 

If no user feedback is received during the interval, the algorithm reduces the 

frequency from ri to ri+1, i.e., it reduces the frequency by one level. The default 

interval is 10 seconds for all levels. If the user is irritated at control level ri, we 

update all of our intervals and the current frequency level as follows:  

ti-1 = αti-1 

tk = βtk, ∀k : k ≠ i-1 

i = min(i-1,0) 

Here �α > 1 is the rate of interval increase and β �< 1 is rate of interval 

decrease. In our study, α �= 2.5 and � β = 0.8. This strategy is motivated by the 

conjecture that the user was comfortable with the previous level and the algorithm 

should spend more time at that level. Again, because users would have to be in the 
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inner loop of any sensitivity study, we have chosen the parameters qualitatively 

and evaluated the whole system using that choice, as described in Section 4.3.1. 

Figure 4.2(b) illustrates the execution of the algorithm for a representative user in 

the FIFA game task. Note that UDFS2 settles to a frequency of approximately 

1.86GHz, after which little interaction is needed. 

4.2. Process-Driven Voltage Scaling 
Current DVFS techniques are pessimistic about the processor, which leads 

them to often use higher voltages than necessary for stable operation, especially 

when they have low temperatures. We elaborate on this pessimism and then 

explain our response to it, process-driven voltage scaling (PDVS). PDVS is 

evaluated in Section 4.3.2. 

4.2.1 Pessimism about the CPU 

The minimum stable voltage of a CPU is the supply voltage that guarantees 

correct execution for given process variation and environmental conditions. It is 

mainly determined by the critical path delay of a circuit. This delay consists of 

two components: transistor gate delay and wire delay. Gate delay is inversely 

related to the operating voltages used in the critical paths of the circuit. 

Furthermore, temperature affects the delay. In current technologies, carrier 

mobility in MOS transistors decreases with increasing temperature. This causes the 

circuits to slow down with increasing temperature. Wire delay is also temperature-

dependent and increases under higher current/temperature conditions. The 
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maximum operating frequency (Fmax) varies in direct proportion to the sustained 

voltage level in the critical timing paths, and inversely with temperature-

dependent RC delay [107]. 

In addition to the operating conditions, which dynamically change, process 

variation has an important impact on the minimum voltage sufficient for stable 

operation. Even in identical environments, a variation in timing slack is observed 

among the manufactured processors of the same family. As a result, each processor 

reacts differently to changes. For example, although two processors can run safely 

at 2.8 GHz at the default supply voltage, it is conceivable that these minimum 

supply voltages will differ. Customizing voltage choices for individual processors 

adapts to, and exploits, these variations. Despite these known effects of process 

variation and temperature on minimum stable voltage, DVFS ignores them: for a 

given frequency, traditional DVFS schemes use a single voltage level for all the 

processors within a family at all times. 

The dynamic power consumption of a processor is directly related to 

frequency and supply voltage and can be expressed using the formula P=V2CF, 

which states that power is equal to the product of voltage squared, capacitance, 

and frequency. In addition to its direct impact on the power consumption, reliable 

operation at increased frequency demands increased supply voltage, thereby having 

an indirect impact on power consumption. Generally, if the frequency is reduced, a 

lower voltage is safe. 
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As processors, memories, and application-specific integrated circuits 

(ASICs) are pushed to higher performance levels and higher transistor densities, 

processor thermal management is quickly becoming a first-order design concern. 

The maximum operating temperature of an Intel Pentium Mobile processor has 

been specified as 100°C [108, 109]. As a general rule of thumb, the operating 

temperature of a processor can vary from 50°C to 90°C during normal operation. 

Thus, there is a large difference between normal and worst-case temperatures. 

We performed an experiment that reveals the relationship between 

operating frequency and minimum stable voltage of the processor at different 

temperature ranges. We used Notebook Hardware Control (NHC) [110] to set a 

particular Vdd value for each operating frequency supported by the processor. 

When a new voltage value is set, NHC runs an extensive CPU stability check. 

Upon failure, the system stops responding and computer needs to be rebooted. We 

execute a program that causes high CPU utilization and raises the temperature of 

the processor. When the temperature reaches a desired range, we perform the CPU 

stability check for a particular frequency at a user-defined voltage value.  

Table 4-A shows the results of this study for the machine described in 

Section 4.0.1. For reference, we also show the nominal core voltage given in the 

datasheet [108]. Note that the nominal voltage is the voltage used by all the DVFS 

schemes by default. The results reveal that, even at the highest operating 

temperature, the minimum stable voltage is far smaller than the nominal voltage. 
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The results also show that at lower operating frequencies, the effect of temperature 

on minimum stable voltage is not pronounced. However, temperature change has a 

significant impact on minimum stable voltage at higher frequencies. In particular, 

at 1.46 GHz, the core voltage value can vary by 5.6% for a temperature change of 

30°C. This would reduce dynamic power consumption by 11.4%. 

Table 4-A. Minimum stable Vdd for different operating frequencies and temperatures  

Stable Vdd (V) at temp ranges (°C) Operating 
Freq. (MHz) 

Nominal 
Voltage (v) 

52–57 62–67 72–77 82–87 
800 0.988 0.736 0.736 0.736 0.736 

1,060 1.068 0.780 0.780 0.780 0.780 
1,200 1.100 0.796 0.796 0.796 0.796 
1,330 1.132 0.844 0.844 0.860 0.876 
1,460 1.180 0.876 0.892 0.908 0.924 
1,600 1.260 0.908 0.924 0.924 0.924 
1,860 1.324 1.004 1.004 1.020 1.020 
2,130 1.404 1.084 1.100 1.116 1.116 

  

As the results shown in Table 4-A illustrate, there is an opportunity for 

power reduction if we exploit the relationship between frequency, temperature, and 

the minimum stable voltage. The nominal supply voltage specified in the processor 

datasheet has a large safety margin over the minimum stable voltages. This is not 

surprising: worst-case assumptions were unnecessarily made at a number of design 

stages, e.g., about temperature. Conventional DVFS schemes are therefore 

pessimistic about particular individual CPUs, often choosing higher voltages than 

are needed to operate safely. They also neglect the effect of temperature, losing the 

opportunity to save further power. 
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4.2.2 Technique 

We have developed a methodology for exploiting the process variation 

described in Section 4.2.1 that can be used to make any voltage and frequency 

scaling algorithm adapt to individual CPUs and their temperature, thereby 

permitting a reduction in power consumption. 

Our technique uses offline profiling of the processor to find the minimum 

stable voltages for different combinations of temperature and frequency. Online 

temperature and frequency monitoring is then used to set the voltage according to 

the profile. The offline profiling is virtually identical to that of Section 4.2.1 and 

needs to be done only once. Currently, it is implemented as a watchdog timer-

driven script on a modified Knoppix Live CD that writes the profile to a USB 

flash drive. To apply our scheme, the temperature is read from the online sensors 

that exist in the processor. The frequency, on the other hand, is determined by the 

dynamic frequency scaling algorithm in use. By setting the voltage based on the 

processor temperature, frequency, and profile, we adapt to the operating 

environment. While the frequency can be readily determined (or controlled), 

temperature changes dynamically. Hence, the algorithm has built-in filtering and 

headroom to account for this fact. Our algorithm behaves conservatively and sets 

the voltage such that even if there is a change of 5°C in temperature before the 

next reading (one Hertz rate), the processor will continue working correctly. 

A reader may at this point be concerned that our reduction of the timing 

safety margin from datasheet norms might increase the frequency of timing errors. 
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However, PDVS carefully determines the voltage required for reliable operation for 

each processor; that is, it finds the individual processor’s safety margin. Moreover, 

it decreases the operating temperature of the processor, which reduces the rates of 

lifetime failure processes. If characteristics of processors change as a result of wear, 

PDVS can adapt by infrequently, e.g., every six months, repeating the offline 

characterization process. To determine processor reliability when using reduced 

operating voltage, we ran demanding programs test the stability of different 

processor components, e.g., the ALU, at lower voltages. We have set the processor 

to work at modified supply voltages as indicated in Table 4-A. The system 

remained stable for approximately two months, at which point we terminated 

testing. Although observing the stable operation of one machine does not prove 

reliability, it is strong evidence. 

4.3. Evaluation 
We now evaluate UDFS and PDVS in isolation and together. We compare 

against the native Windows XP DVFS scheme, displaying reductions in power and 

temperature. 

Our evaluations are based on user studies, as described in Section  and 

elaborated upon here. For studies not involving UDFS, we trace the user’s activity 

on the system as he uses the applications and monitor the selections DVFS makes 

in response. For studies involving UDFS, the UDFS algorithm is used online to 

control the clock frequency in response to user button presses. We begin by 

describing a user study of UDFS that provides both independent results and traces 
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for later use. Next, we consider PDVS as applied to the Windows DVFS 

algorithm. We then consider UDFS with and without PDVS, comparing to 

Windows DVFS. Here, we examine both dynamic CPU power (using simulation 

driven from the user traces) and system power measurement (again for a system 

driven from the user traces). In measurement, we consider not only power 

consumption, but also CPU temperature. Finally, we discuss a range of other 

aspects of the evaluation of the system. 

The following claims are supported by our results:   

• UDFS effectively employs user feedback to customize processor frequency to 

the individual user. This typically leads to significant power savings compared 

to existing dynamic frequency schemes that rely only on CPU utilization as 

feedback. The amount of feedback from the user is infrequent, and declines 

quickly over time as an application or set of applications is used. 

• PDVS can be easily incorporated into any existing DVFS scheme, such as 

the default Windows scheme, and leads to dramatic reductions in power use by 

lowering voltage levels while maintaining processor stability. 

• In most of the cases, the effects of PDVS and UDFS are synergistic: the 

power reduction of UDFS+PDVS is more than the sum of its parts. 

• Multitasking increases the effectiveness of UDFS+PDVS. 
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• Together and separately, PDVS and UDFS typically decrease CPU 

temperature, often by large amounts, increasing both reliability and longevity. 

In addition, the effects of PDVS and UDFS on temperature are synergistic. 

4.3.1 UDFS 

To evaluate the UDFS schemes, we ran a study with 20 users. Experiments 

were conducted as described in Section 4.0.1. Each user spent 45 minutes to   

- Fill out a questionnaire stating level of experience in the use of PCs, 

Windows, Microsoft PowerPoint, music, 3D animation video, and FIFA 2005 (2 

minutes) from among the following set: “Power User”, “Typical User”, or 

“Beginner”; 

- Read a one page handout (2 minutes); 

- Acclimate to the performance of our machine by using the above 

applications (5 minutes); 

- Perform the following tasks for UDFS1: Microsoft PowerPoint plus 

music (4 minutes); 3D Shockwave animation (4 minutes); FIFA game (8 minutes); 

and 

- Perform the same set of tasks for UDFS2.  

Each user was instructed to press the F11 key upon discomfort with 

application performance. We recorded each such event as well as the CPU 

frequency over time. 
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Figure 4.3. Frequency over time for UDFS1 aggregated over 20 users. 

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint
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Figure 4.4. Frequency over time for UDFS2 aggregated over 20 users. 
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Figure 4.3 and Figure 4.4 illustrate the performance of the two algorithms 

in our study. The two columns represent UDFS1 and UDFS2 and the three rows 

represent the three applications. Each graph shows, as a function of time, the 

minimum, average, maximum, and standard deviation of CPU frequency, 

aggregated over our 20 users. Notice that almost all users felt comfortable using 

PowerPoint while the processor was running at the lowest frequency. As one might 

expect, the average frequency at which users are comfortable is higher for the 

Shockwave animation and the FIFA game. There is large variation in acceptable 

frequency among the users for the animation and game. Generally, UDFS2 

achieves a lower average frequency than UDFS1. For both algorithms it is very 

rare to see the processor run at the maximum CPU frequency for these 

applications. Even the most sophisticated users were comfortable with running the 

tasks with lower frequencies than those selected by the dynamic Windows DVFS 

scheme. Sections 4.3.3 and 4.3.4 give detailed, per-user results for UDFS (and 

UDFS+PDVS). 

4.3.2 PDVS 

Using the experimental setup described in Section , we evaluate the effects 

of PDVS on the default Windows XP DVFS scheme. In particular, we run the 

DVFS scheme, recording frequency, then determine the power saving possible by 

setting voltages according to PDVS instead of using the nominal voltages of 

DVFS. 
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Table 4-B.  Power reduction for Windows DVFS and DVFS+PDVS 

 
Power Reduction (%) over Max Freq. Application 

DVFS DVFS+PDVS 
PowerPoint + Music 83.08 90.67 

3D Shockwave Animation 3.19 40.67 
FIFA Game 1.69 39.69 

  

Table 4-B illustrates the average results, comparing stock Windows DVFS 

and our DVFS+PDVS scheme. The baseline case in this experiment is running the 

system with the highest possible CPU frequency and its corresponding nominal 

voltage. The maximum power savings due to dynamic frequency scaling with 

nominal voltages are observed for PowerPoint. For this application, the system ran 

at the lowest clock frequency most of the time, resulting in a reduction of 83.1% 

for the native DVFS scheme. DVFS+PDVS reduces the power consumption by 

90.7%. For PowerPoint, adding PDVS to DVFS only reduces power slightly. 

For the Shockwave animation and the FIFA game, the power reductions 

due to dynamic frequency scaling are negligible because the Windows DVFS 

scheme runs the processor at the highest frequency most of the time. 

DVFS+PDVS, however, improves the energy consumption of the system by 

approximately 40%, compared to the baseline. These results clearly demonstrate 

the benefits of process-driven voltage scaling. 

4.3.3 UDFS+PDVS (CPU dynamic power, trace-driven simulation) 

To integrate UDFS and PDVS, we used the system described in 

Section 4.1.2 recording frequency over time. We then combine this frequency 
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information with the offline profile and techniques described in Section 4.1.2 

and 4.2.2 to derive CPU power savings for UDFS with nominal voltages, 

UDFS+PDVS, and the default Windows XP DVFS strategy. We calculate the 

power consumption of the processor. We have also measured online the power 

consumption of the overall system, as described in Section 4.3.4. 

We conducted a user study (n=20) with exactly the same structure 

presented in Section 4.3.1, except that Windows XP DVFS was also considered. 

Figure 4.5 presents both individual user results and average results for UDFS1, 

UDFS1+PDVS, UDFS2, and UDFS2+PDVS. In each case, power savings over the 

default Windows DVFS approach are reported. To interpret the figure, first choose 

an application. Next, note the last two bars on the corresponding graph. These 

indicate the average performance of UDFS1 and UDFS2, meaning the percentage 

reduction in power use compared to Windows DVFS. Each bar is broken into two 

components: the performance of the UDFS algorithm without PDVS is the lower 

component and the improvement in performance of the algorithm combined with 

PDVS is the upper component. The remaining bars on the graph have identical 

semantics, but represent user-specific information. 
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Figure 4.5. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP 
DVFS (CPU Dynamic Power).  Chebyshev bound-based (1-p) values for difference 

of means from zero are also shown.  

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint
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For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce power 

consumption by an average of 56%. The standalone UDFS algorithms reduce it by 

an average of 17–19%. User 3 with UDFS2 is anomalous. This user pressed the 

feedback button several times and as a result spent most of the time at high 

frequencies. 

For the Shockwave animation, we see much more mixed responses from the 

users, although on average we reduce power by 55.1%. On average, UDFS1 and 

UDFS2 independently reduce the power consumption by 15.6% and 32.2%, 

respectively. UDFS2 performs better for this application because the users can be 

satisfied by ramping up to a higher frequency rather than the maximum frequency 

supported by the processor. Note that UDFS1 immediately moves to the maximum 

frequency on a button press. User 17 with UDFS1 is anomalous. This user wanted 

the system to perform better than the hardware permitted and thus pressed the 

button virtually continuously even when it was running at the highest frequency. 

Adding PDVS lowers average power consumption even more significantly. On 

average, the power is reduced by 49.2% (UDFS1+PDVS) and 61.0% 

(UDFS2+PDVS) in the combined scheme. 

There is also considerable variation among users for the FIFA game. Using 

conventional DVFS, the system always runs at the highest frequency. The UDFS 

schemes try to throttle down the frequency over the time. They therefore reduce 

the power consumption even in the worst case (0.9% and 2.1% for UDFS1 and 

UDFS2, respectively) while achieving better improvement, on average (16.1% and 



 
 

145 

 

25.5%, respectively). Adding PDVS improves the average power savings to 49.5% 

and 56.7% for UDFS1 and UDFS2, respectively. For the Shockwave animation and 

the FIFA game, we see a large variation among users, but in all cases the 

combination of PDVS and UDFS leads to power savings over Windows DVFS. On 

average, in the best case, the power consumption can be reduced by 57.3% over 

existing DVFS schemes for all three applications. This improvement is achieved by 

combining the UDFS2 (24.9%) and PDVS (32.4%) schemes. 

UDFS and PDVS are synergistic. The UDFS algorithms let us dramatically 

decrease the average frequency, and PDVS’s benefits increase as the frequency is 

lowered. At higher frequencies, the relative change from the nominal voltage to the 

minimum stable voltage is lower than that at lower frequencies. In other words, 

the power gain from shifting to the minimum stable voltage is higher at the lower 

frequencies. However, at higher frequencies, PDVS also gains from the variation in 

minimum stable voltage based on temperature as shown in Table 4-A. These two 

different advantages of the PDVS result in power improvements at a wide range of 

frequencies. 

UDFS+PDVS mean results have statistical significance even with weak 

bounds. Figure 4.5 shows mean improvements across our 20 users. Normality 

assumptions hold neither for the distribution of individual user improvements nor 

for the error distribution of the mean. Instead, to discard the null hypothesis, that 

our mean improvements for UDFS+PDVS are not different from zero, we have 

computed the p value for discarding the null hypothesis using Chebyshev bounds, 
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which are looser but rely on no such assumptions. As can be seen from the figure, 

1-p is quite high, indicating that it is extremely unlikely that our mean 

improvements are due to chance. We use Chebyshev bounds similarly for other 

results. User self-reported level of experience correlates with power improvement. 

For example, for FIFA, experienced users expect faster response from the system 

causing the system to run at higher frequencies, resulting in smaller power 

improvements. Our interpretation is that familiarity increases both expectations 

and the rate of user feedback to the control agent, making annoyance with reduced 

performance more probable and thus leading to higher frequencies when using the 

UDFS algorithms. 

 
Figure 4.6. System Power Measurement Setup 

4.3.4 UDFS+PDVS (System power and temperature measurement) 

To further measure the impact of our techniques, we replay the traces from 

the user study of the previous section on our laptop. The laptop is connected to a 

National Instruments 6034E data acquisition board attached to the PCI bus of a 

host workstation running Linux, which permits us to measure the power 
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consumption of the entire laptop. The sampling rate is 10Hz. During the 

measurements, we have turned off the display of the laptop to make our readings 

more comparable to the CPU power consumption results of the previous section. 

Ideally, we would have preferred to measure CPU power directly for one-to-one 

comparison with results of the previous section, but we do not have the surface 

mount rework equipment needed to do so. Figure 4.6 shows the experimental setup 

used to measure the actual system power consumption. 

4..3.4.1 Power 

 Figure 4.7 presents results for UDFS1, UDFS1+PDVS, UDFS2, and 

UDFS2+PDVS, showing the power savings over the default Windows DVFS 

approach. The Chebyshev bounds indicate that the mean improvements are 

extremely unlikely to have occurred by chance. For PowerPoint, UDFS1+PDVS 

and UDFS2+PDVS reduce power consumption by averages of 22.6% and 22.7%, 

respectively. For the Shockwave animation, although we see much more variation, 

UDFS1 and UDFS2 reduce the power consumption by 17.2% and 33.6%, 

respectively. Using UDFS together with PDVS lowers average power consumption 

by 38.8% and 30.4% with UDFS1 and UDFS2, respectively. The FIFA game also 

shows considerable variation among users. On average, we save 15.5% and 29.5% 

of the power consumption for UDFS1 and UDFS2, respectively. Adding PDVS 

improves the average power savings to 56.8% and 62.9% over Windows DVFS 

with UDFS1 and UDFS2, respectively. 
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Figure 4.7. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP 
DVFS (measured system power with display off). Chebyshev bound-based (1-p) 

values for difference of means from zero are also shown.  

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint
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On average, the power consumption of the overall system can be reduced by 

49.9% for all three applications. This improvement is achieved by combining the 

UDFS2 scheme (22.1%) and PDVS scheme (27.8%). 

The results presented in the previous section, and in this section, cannot be 

directly compared because the previous section reports the simulated power 

consumption of the CPU and this section reports the measured power consumption 

of the laptop. However, some conclusions can be drawn from the data in both 

sections. For applications like PowerPoint, where the CPU consumes only a small 

fraction of the system power, the benefit on system power is low. On the other 

hand, for the applications that originally result in high CPU power consumption, 

the system power savings can be substantial due to the reduction in dynamic 

power as well as the operating temperatures and consequently leakage power. 

4.3.5 Temperature 

 We used CPUCool [103] to measure CPU temperature in the system. 

Figure 4.8 shows the mean and peak temperatures of the system when using the 

different combinations of DVFS, PDVS, and UDFS schemes. The values reported 

for UDFS and UDFS+PDVS are the averages over 20 users. 
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(b) Maximum Temperature 

Figure 4.8. Mean and peak temperature measurement. 

In all cases, the UDFS1 and UDFS2 schemes lower the temperature 

compared to the Windows native DVFS scheme due to the power reductions we 

have reported in the previous sections. The maximum UDFS temperature 
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reduction is seen in the case of the UDFS2 scheme used for the Shockwave 

application (7.0°C). On average, for all 3 applications, the UDFS1 and UDFS2 

schemes reduce the mean temperature of the system by 1.8°C and 3.8°C, 

respectively. Similarly, PDVS reduces the mean system temperature by 8.7°C on 

average for the three applications. The best improvement is observed for the FIFA 

game, where temperature decreases by 12.6°C. 

The combination of PDVS and UDFS is again synergistic, leading to even 

greater temperature reductions than PDVS or UDFS, alone. For the Shockwave 

application, UDFS2+PDVS reduces the mean temperature by 19.3°C. The average 

temperature reductions in all three applications by the UDFS1+PDVS and 

UDFS2+PDVS schemes are 12.7°C and 13.7°C, respectively. Our 13.2°C claim 

averages these two. 

4.4. Discussion 
We now discuss the degree of user interaction needed to make UDFS work, 

the CPU reliability and longevity benefits of our techniques, and the effects of 

multitasking. 

Table 4-C. Average number of user events. 

  
PowerPoint 3D animation FIFA Game Algorithms 

4 min 4 min 4 min 4 min 
UDFS1 0.35 11.85 5.10 3.42 
UDFS2 0.60 14.25 6.50 3.82 
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4..4.1.2 User interaction 

 While PDVS can be employed without user interaction, UDFS requires 

occasional feedback from the user. Minimizing the required rate of feedback button 

presses while maintaining effective control is a central challenge. Our current 

UDFS algorithms perform reasonably well in this respect, but could be improved. 

Table 4-C presents the average number of annoyance button presses over a 4 

minute period for both versions of UDFS algorithms in our 20 user study. 

Generally, UDFS2 requires more frequent button presses than UDFS1, because a 

single press only increments the frequency. The trade-off is that UDFS1 generally 

spends more time at the maximum frequency and thus is more power hungry. On 

average, a user pressed a button every 8 minutes for PowerPoint, every 18 seconds 

for the Shockwave animation, and every 50 seconds for the FIFA game. During the 

course of the study, for the 3D animation, there were some extreme cases in which 

the user kept pressing the button even when the processor was running at the 

highest frequency. This can be explained by the user’s dissatisfaction with the 

original quality of the video or the maximum performance available from the CPU, 

over which we had no control. If we omit the three most extreme cases from both 

maximum and minimum number of annoyances, on average a user presses the 

annoyance button once every 30 seconds for the Shockwave application. 

We also note that the system adapts to users quickly, leading to a reduced 

rate of button presses. In the Table 4-C, we show both the first and second 4 

minute interval for the FIFA game. The number of presses in the second interval 
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is much smaller than the first. Our interpretation is that once a stable frequency 

has been determined by the UDFS scheme, it can remain at that frequency for a 

long time, without requiring further user interaction. 

Table 4-D records the average number of voltage transitions for the six 

different schemes used in our study. A voltage transition is caused either due to a 

button press or a significant change in operating temperature. For the PowerPoint 

application, we observe a reduction in the number of transitions because the spikes 

observed for  

Table 4-D.  Number of voltage transitions 

 

Applications DVFS DVFS+ 
PDVS UDFS1 UDFS1+

PDVS UDFS2 UDFS2+
PDVS 

PowerPoint
+Music 11.00 11.00 4.40 4.65 6.55 6.50 

3D 
Animation 3.00 4.00 10.30 11.50 16.3 17.55 

FIFA Game 6.00 6.00 18.06 18.05 28.85 29.30 

  

DVFS do not occur for UDFS1 and UDFS2. On the other hand, the 3D 

animation and FIFA Game applications have more voltage transitions than 

observed with Windows native DVFS, because they aim to reduce power by 

adjusting throttle and, in effect, voltage. In contrast, conventional DVFS keeps the 

system at the highest frequency during the entire interval. The increase in the 

number of transitions for the PDVS schemes implemented on top of UDFS are 
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caused by the extra voltage transitions due to changing temperature at a given 

frequency level. 

4..4.1.3 Reliability and longevity 

 In addition to its direct impact on power consumption, our techniques may 

ultimately improve the lifetime reliability of a system. Earlier research [111] 

showed that the effect of operating temperature on integrated circuit’s mean time 

to failure (MTTF) is exponential. As we show in Section 4.3.5 , our schemes can 

reduce the operating temperature by 13.2°C on average, thereby potentially 

reducing the rate of failure due to temperature-dependant processes such as 

electromigration. Traditionally, the required supply voltage of a processor is 

reported at the maximum operating temperature of the system. Therefore, at 

temperatures below the maximum rated temperature, timing slack exists. As long 

as the current temperature is below the highest rated operating temperature, the 

operating voltage can be reduced below the rated operating voltage without 

reducing reliability below that of the same processor operating at the rated voltage 

and at the maximum temperature. 

4..4.1.4 Multitasking 

 A natural question to ask is whether the extremely simple “press the 

button” user feedback mechanism we use in UDFS is sufficient for describing user 

preferences in a multitasking environment. To see the effect of UDFS in a 

multitasking environment, we conducted a small study (n=8) similar to that of 

Section 4.3. Instead of several consecutive tasks, the user was asked to watch a 3D 
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animation using Microsoft Internet Explorer while listening to MP3 music using 

Windows Media Player in compact mode with visualization. 
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Figure 4.9. Power improvement in the multitasking environment. Chebyshev bound-

based (1-p) values for difference of means from zero are also shown.  

Figure 4.9 shows the measured system power improvements compared to 

Windows DVFS. On average, the power consumption of the overall system is 

reduced by 29.5% and 55.1% for UDFS1 and UDFS2, respectively. Adding PDVS 

improves the average power savings to 58.6% and 75.7% for UDFS1 and UDFS2, 

respectively. Although these results are preliminary, combined with the results 

from the combined PowerPoint+MP3 task described in Section 4.0.1, they suggest 

that the simple feedback mechanism is sufficient in a multitasking environment. It 

is clearly a better proxy of the user’s satisfaction than the CPU utilization of the 

combined task pool. 

4.5. Related Work 
Dynamic voltage and frequency scaling (DVFS) is an effective technique for 

microprocessor energy and power control for most modern processors [112, 113]. 
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Energy efficiency has been a major concern for mobile computers. Fei et al. [114] 

proposed an energy aware dynamic software management framework that 

improves battery utilization for mobile computers. However, this technique is only 

applicable to highly adaptive mobile applications. Researchers have proposed 

algorithms based on workload decomposition [115], but these tend to provide 

power improvements only for memory-bound applications. Wu et al. [116] 

presented a design framework of a run-time DVFS optimizer in a general dynamic 

compilation system. The Razor [117] architecture dynamically finds the minimal 

reliable voltage level. Dhar et al. [118] proposed adaptive voltage scaling that uses 

a closed-loop controller targeted towards standard-cell ASICs. These schemes are 

similar to the PDVS scheme. However, our approach is completely operating 

system controlled and does not require any architectural modifications and 

therefore incurs no hardware overhead. Intel Foxton technology [119] provides a 

mechanism for select Intel Itanium 2 processors to adjust core frequency during 

operation to boost application performance. However, unlike PDVS it does not 

perform any dynamic voltage setting.  

Other DVFS algorithms use task information, such as measuring response 

times in interactive applications [120, 121] as a proxy for the user. Unlike 

Vertigo [122], we monitor the user instead of the application. Xu et al. proposed 

novel schemes [123] minimizing energy consumption in real-time embedded systems 

that execute variable workloads. However, they try to adapt to the variability of 

the workload rather than to the users. AutoDVS [124] is a dynamic voltage scaling 
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(DVS) system for hand-held devices. They used user activity as an indicator to 

detect computationally intensive CPU intervals and use that to drive DVS. In 

contrast, UDFS uses user activity to directly control the frequency of the system. 

Ranga et al. proposed energy-aware user interfaces [125] based on usage scenarios, 

but they concentrated on the display rather than the CPU. Gupta et al. [100] and 

Lin et al. [101] demonstrated a high variation in user tolerance for performance in 

the scheduling context, variation that we believe holds for power management as 

well. Anand et al. [126] discussed the concept of a control parameter that could be 

used by the user. However, they focus on the wireless networking domain, not the 

CPU. Second, they do not propose or evaluate a user interface or direct user 

feedback. To the best of our knowledge, the UDFS component of our work is the 

first to employ direct user feedback instead of a proxy for the user. 

Dynamic thermal management is an important issue for modern 

microprocessors due to the high cost of cooling solutions. Previous work has 

discussed microarchitectural modeling and optimization based on 

temperature [127-130]. Liu and Svensson made a trade-off between speed and 

supply voltage [130]. Brooks and Martonosi [131] proposed dynamic thermal 

management for high-performance processors. For portable computers, 

Transmeta’s Crusoe [132] and Intel’s Pentium-M [113] are notable commercial 

products that uses innovative dynamic thermal management. To the best of our 

knowledge, the PDVS component of our work is the first to consider exploiting 
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process variation via per-CPU customization using profiling. In addition, it is the 

first scheme to consider temperature in voltage level decisions. 

4.6. Conclusion 
We have identified processor and user pessimism as key factors holding 

back effective power management for processors with support for DVFS. In 

response, we have developed and evaluated the following new, process- and user-

adaptive DVFS techniques: process-driven voltage scaling (PDVS) and user-driven 

frequency scaling (UDFS). These techniques dramatically reduce CPU power 

consumption in comparison with existing DVFS techniques. Extensive user studies 

show that we can reduce power on average by over 50% for single task and over 

75% for multitasking workloads compared to the Microsoft Windows XP DVFS 

scheme. Furthermore, CPU temperatures can be markedly decreased through the 

use of our techniques. PDVS can be readily used along with any existing frequency 

scaling approach. UDFS requires that user feedback be used to direct processor 

voltage and frequency control. PDVS and UDFS are synergistic. UDFS leads to 

lower average frequencies and PDVS allows great decreases in voltage at low 

frequencies.  
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CHAPTER 5 

USER-PERCEIVED PERFORMANCE EVALUATION 

Existing architectures/systems typically aim at optimizing for user 

satisfaction by employing metrics based largely on instruction throughput (e.g., 

instructions-per-second). These metrics are used because they are easy to access, 

easy to compare across platforms, and are believed to reflect user demands for 

performance at a very low level. However, in this chapter, we will show that low-

level information is not as good a proxy for user satisfaction with performance as is 

high-level information actually observed or perceived by the user. We focus on 

interactive applications and show that it is possible to infer information about 

user-perceived performance by measuring changes at the user interface. This 

provides better information about the performance level necessary to maintain user 

satisfaction and therefore can be used to achieve a reduction in power 

consumption, a reduction in heat generation, and an increase in lifetime reliability. 

Processor frequency has a strong effect on power consumption and 

temperature, directly and also indirectly through the need for higher voltages at 

higher frequencies. Therefore, Dynamic Voltage and Frequency Scaling (DVFS) is 

one of the most commonly used power reduction techniques in modern processors. 
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DVFS varies the frequency and voltage of a microprocessor at runtime according 

to processing needs. Although there are many different versions of DVFS, at its 

core DVFS adapts power consumption and performance to the current workload of 

the CPU. Specifically, existing DVFS techniques in high-performance processors 

select an operating point (CPU frequency and voltage) based on the utilization of 

the processor and other information available to the Operating System (OS) 

kernel. This approach is pessimistic regarding user satisfaction and assumes that 

the maximum processor frequency is necessary for every process. A high level of 

CPU utilization or a burst of certain OS events leads directly to a high frequency 

(and hence high voltage), regardless of the user’s satisfaction or expectation of 

performance. This can produce unnecessary increases in frequency, voltage, power, 

and temperature. 

In response to this observation, discussed further in Section 5.1, we have 

developed a new power management technique that relies upon a more accurate 

proxy for user performance needs than CPU- or OS-level events, but is still 

inexpensive to measure. We propose to determine user satisfaction with processor 

performance not with information that is “close to metal” and hidden from the 

user, but rather with information that is “close to flesh” and apparent to the user. 

Interface devices are the logical locations for these measurements since they sit 

between computation and user perception. The display is particularly useful 

because it is the user’s primary source of information regarding the performance of 

the computer.   
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We must note that a user-satisfaction aware optimization metric does not 

have to provide absolute values, but relative values are sufficient. In other words, 

we do not need an exact measure of user-perceived performance to make decisions. 

For example, consider an application, such as video playback, that only affects the 

screen. If there are two settings on the architecture that result in identical 

sequences and timing of frames on the screen, then we can safely conclude that 

these two states have the same performance. Using this idea in the context of 

DVFS, we can compare application performance (i.e., user-perceived performance 

based on changes in the display) to the performance measured using the same 

metric at the highest available frequency. Hence, we only need to make relative 

measurements to determine user satisfaction. 

To bring this idea to life and evaluate it, we have developed a new power 

management framework called PICSEL (Perception-Informed CPU performance 

Scaling to Extend battery Life) that monitors the rate of change of pixel 

intensities in the display. An algorithm controlling the processor’s operating 

frequency then makes decisions based upon these rates of change. The algorithm is 

tested with two configurations: conservative PICSEL (cPICSEL) and aggressive 

PICSEL (aPICSEL) (Section 5.2.2). We focus on the DVFS technique 

implemented by a commercial OS and show that runtime information on user-

perceived performance can enhance the effectiveness of the power management 

scheme. We also show that this approach (i.e., considering user satisfaction while 

taking architectural decisions) can result in optimizations that are not possible 
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otherwise. This is a collaborative work with my colleague Jack Cosgrove who is a 

graduate student interested in correlating user satisfaction with computer display. 

Specifically, this work makes the following contributions: 

• We show that traditional performance metrics do not necessarily represent 

user-perceived performance,  

• We introduce new metrics that can successfully measure user-perceived 

performance, and 

• We propose, implement, and evaluate PICSEL, a power management scheme 

that utilizes user-perceived performance. 

The chapter is organized as follows. In Section 5.1, we describe the 

motivational results showing the difference between instruction-throughput and 

user-perceived performance. PICSEL is described in Section 5.2. Section 5.3 

presents the results obtained from user studies. We compare our work with 

previous studies in Section 5.4. Section 5.5 summarizes our contributions.  

5.1. User-Perceived Performance 
The motivation for including user-perceived performance in any objective 

function is clear: any optimization (performance, power, reliability, security, etc.) 

ultimately aims to satisfy the user. However, the difficulty in optimizing directly 

for user-perceived performance is finding a metric that corresponds to it. For 

interactive applications, the events occurring on the input/output devices are good 

candidates for measuring what the user observes. However, input events are rare 
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compared to output events. Therefore, considering output to the user is preferable 

for estimating the performance experienced by the user. Of all the types of output 

supplied to the user, graphics are used in the highest proportion of applications. 

Therefore, utilizing properties of the display to measure user-perceived 

performance is a good alternative. 

Given an application that only changes the display, it is safe to assume that 

the sequence of frames is an indication of the user-perceived performance. For 

example, if there are two architectural alternatives that result in identical frame 

timings and sequences, we can conclude that these architectures provide the same 

user-perceived performance. On the other hand, what happens if the sequences are 

different? One alternative would be to consider frame rate. For example, if the 

frame rate is decreased by 10%, then we may claim that the user-perceived 

performance is reduced by 10%. However, the correlation between frame rate and 

user satisfaction may be weak. In fact, Ghinea and Thomas [133] have done a 

perceptual study showing that neither frame rate nor color depth are significant 

predictors of user satisfaction, but the combination of these two entities strongly 

correlates to the user satisfaction. However, extracting the exact frame rate and 

color depth information would require changes in the application and/or OS. 

Hence, we decided to utilize a metric that is independent of the application and 

easily measurable: we measure the rate of display pixel change over time, which 

captures the combination of these two metrics.  
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It is important to note that measuring our metric, pixel rate change, has 

comparable complexity to measuring existing metrics such as CPU utilization that 

are commonplace in today’s architectures. In addition, the link between user 

satisfaction and changes on the display is supported by prior work [133], as well as 

intuition.    

Traditionally, the rate of instruction execution has been widely used as a 

measure of system performance. First, we perform a set of experiments measuring 

the instruction throughput and the rate of pixel change to understand the relation 

between these two metrics. In these experiments, we measure the number of 

instructions-per-second (IPS) on a 2.13 GHz Intel Pentium M-based laptop (please 

see Section 5.3 for further details on the experimental study environment) for three 

applications: a 3D Shockwave animation, a DVD quality video played, and a 3D 

video game. We also measured the changes in intensity in the red, green, and blue 

channels of some of the pixels being used to display these applications using the 

method described in Section 5.2.3, and averaged these changes together for each 

time instance to obtain the Average Pixel Change (APC). The procedure to 

calculate APC is presented in Table 5-A. We repeat these measurements at all six 

available processor operating frequencies. 
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Figure 5.1. IPS and APC curve  

Table 5-A. User-Perceived Performance Metrics 

Metrics Measurement Procedure 

Average Pixel Change 
(APC) 

- Capture the Pixel intensities of the RGB 
channels of all the pixels in a memory buffer 
- Calculate the relative changes for all the 

sampled pixels 
- The mean of relative changes is the APC 

Rate of Average Pixel 
Change (APR) (APCTi – APCTi-1)/(Ti - Ti-1) 

Figure 5.1 illustrates the results of this experiment, with the solid lines 

representing the APC and dotted lines representing the IPS. As depicted in the 

figure, the IPS of a system is closely related to the operating frequency and is 

fairly uniform across the three applications. APC is also dependent on the 

operating frequency, but this dependence is influenced by the application more so 

than IPS. For the Shockwave application, the effect on APC due to frequency 

throttling is below 10% for the highest three frequencies. The Video application 
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shows similar properties. For this task, we could simply set the frequency statically 

to a lower value without causing noticeable change in the APC. For the game 

application, the highest two frequency states can sustain the APC value within the 

10% threshold. However, the lower frequency states cause the APC value to drop 

suddenly. Most importantly, we see a significant difference between the reduction 

in IPS and APC. In other words, these results support our claim that the 

instruction throughput and user-perceived performance are not linearly related. 

We observe that the APC value of a system can quantize user perceived 

performance and can be used as a control parameter for a power management 

scheme that implements DVFS based on user-perceived performance. 

The primary metric we use for user-perceived performance is APC 

normalized to the total number of pixels in the display. As shown in the Figure 

5.1, we observe considerable variation in the APC values across different 

applications as well as different frequency states. On the other hand, it is also 

possible that the reduction in the frequency may result in discontinuities in the 

display. Previous researchers [134] have found that jitter and latency are the main 

sources of user discontent in networked multimedia applications. For example, 

consider an application that starts skipping frames when the computational power 

is reduced. In such a case, the APC may not be affected significantly: in a 

sequence of frames, even if some of the intermediate ones are skipped, the pixel 

difference between the first and the last does not change. To capture the 

occurrences of such discontinuities, we record the Rate of Average Pixel 
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Change (APR) normalized over the number of pixels. In other words, we 

calculate the difference between the APC values measured at each time instant. 

This roughly corresponds to the derivative of the APC. Figure 5.2 illustrates the 

APR trends observed in three applications used in this research project. When 

there are glitches during display, in general the APR value increases rapidly. This 

is true for applications where the glitch problem is observed at the lower 

frequencies, namely the Video and 3D Shockwave animation. For other 

applications (such as the game), we simply observe an overall slowdown and APR 

values drop in parallel to APC levels. This reduces game jitter at the price of 

slowing the entire game down. As a result, for this particular application we 

actually observe a reduction in APR value at lower frequencies as the game’s 

average frame rate is reduced.  
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Figure 5.2. APR curves for the three applications 
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The APR reveals even more pronounced differential behavior. This behavior 

can permit a DVFS algorithm to differentiate between two applications with 

similar computational loads and to assign them to different operating frequencies, 

one potentially lower than would have otherwise been assigned by existing 

pessimistic DVFS schemes. 

5.2. PICSEL Framework  
User-perceived performance-based frequency scaling has two components. 

First, we have to measure the rate of change in the pixels displayed on the screen. 

This measurement tool is described in the next section. Then, we have to make a 

throttling decision based on these measurements. The algorithm making this 

decision is described in Section 5.2.2. In Section 5.2.3, we describe how PICSEL 

interacts with the system.  

5.2.1 PICSEL Display Access  

There are several methods for accessing the content of a computer display 

owing to the many steps involved in generating this content. Although more 

complex schemes are possible, the organization of a generic graphics pipeline in a 

contemporary computer is shown in Figure 5.3. 
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Figure 5.3. Graphics pipeline in a modern PC 

Application content is read and produced by the CPU, which determines 

what action should be taken by the video card. The video card then performs 

operations on the data stream sent by the CPU. The most common operations are 

blitting, rendering, and decoding. Blitting is a method to erase and redraw sections 

of a bitmapped image more quickly than a raster scan. Rendering uses highly 

parallel floating-point processors to display three-dimensional primitives as two-

dimensional projections. Video cards can also perform hardware-accelerated 

decoding of such compression algorithms as MPEG-2. Each of these different 

methods may use separate portions of video memory that are invisible to each 

other until composition on the frame buffer. The frame buffer consists of at least 

two video memory buffers each as large as the monitor screen upon which the 

separate video buffers are pieced together through a process called composition. 

PICSEL gathers screen information using the Windows XP screenshot 

method, which is simple to implement and can blit any region of the screen to 

main memory. However, screen content may be missing from sections of the blitted 

Frame BufferBlitting

Rendering

Decoding

CPU

Main 
Memory 

Video Card 



 
 

170 

 

region if those sections were drawn elsewhere in video memory by a rendering or 

decoding operation. Such a sub-section of video memory stored outside the full 

screen video memory and later composited within a window is called a hardware 

overlay. Screen data from a hardware overlay can be obtained, however, by 

turning off the hardware overlay option in the application owning the overlay. The 

lack of hardware overlays does not degrade performance during testing. It should 

also be noted that the blitting method will be less available in the future as 

desktop environments move towards full rendering, e.g., Quartz on Macintosh, 

Aero on Windows, and Compiz Fusion on the X Server. 

Ideally we would like to consider all the pixels present in the display while 

calculating the APC. Furthermore, the rate of APC calculation should be same as 

rate of frame change in the system. However, both of these constraints introduce 

heavy computational overhead on the system. Therefore, it is necessary to reduce 

the size of the captured screen area so that the capturing process does not occupy 

too much of the computer’s resources (we decided to limit the overhead to less 

than 2% CPU utilization). The final captured area is 64 by 51 pixels, or a scaling 

down of each dimension of a 1280 by 1024 screen by a factor of twenty. This block 

contained 3276 pixels and was fixed at the center of the screen. Moreover the 

sampling frequency for calculating APC is set to 10 Hz. Increasing the sampling 

frequency further increases the computational overhead. As we will show in 

Section 5.3, for our target applications, these limitations do not prevent PICSEL 

from capturing the user-perceived performance. Nevertheless, it is possible that 
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applications will not use our focus area; hence it may be desirable to overcome 

these limitations for other application domains. There are two design alternatives 

to solve this problem. First, the PICSEL algorithm can be implemented in 

hardware (either the CPU or the graphics card). The simplicity of the algorithm 

ensures relatively easy implementation in actual hardware at low overhead. 

Second, PICSEL could be executed on the graphics hardware. Although such 

implementations would be desirable, our goal in this work is to provide a proof-of-

concept, which is achieved with the current implementation of PICSEL.  

After a section of the screen has been captured, it is stored to a memory 

buffer. This buffer is compared to another buffer containing the previous screen 

capture, and the magnitudes of the intensity differences for the red, green, and 

blue channels are calculated. Only two buffers are necessary, with each buffer 

toggling between old and new screen captures. All of the magnitude differences are 

summed together to obtain a single statistic describing the first time derivative of 

pixel intensity over the sampling period (APC). 

It is important to understand that this method does not capture each 

frame. However, since we also measure the APR, the difference between the frame 

rate and the sampling rate does not prevent us from capturing any slowdown 

because the jitter of pixel intensities will be captured with the APR metric. It is 

this second time derivative that permits a sampling frequency below the frame rate 

of the screen.  
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5.2.2 PICSEL Algorithm 

PICSEL decides on the frequency level by using three state variables: f, the 

current CPU frequency; µAPC, APC in the last time interval; and µAPR, APR in the 

last time interval. Pixel data are measured at fixed sampling frequency and stored 

to a file by a background process. Adaptation is controlled by three constant 

parameters: �ρ, the APC change threshold; γ, ���the APR change threshold; and α�, the 

threshold difficulty level corresponding to each frequency state. PICSEL can either 

be in the initialization or the control state. The idea in the initialization stage is to 

capture information about the APC and APR values observed at the highest 

frequency. These values will be compared against during the control stage to make 

throttling decisions. Therefore, during initialization, the CPU frequency is set at 

the highest value fmax for a time interval Tinit. The APC and APR values of the 

system over the time interval Tinit are obtained from the background process and 

initialized as APCglobal and APRglobal. PICSEL then enters the control state where 

at the end of each time interval Ti, the APC and APR of the system over the last 

interval is obtained from the background process. PICSEL then makes a decision 

as follows: 

If    µAPC  < ( 1-ρ*(1-α) )*APCglobal or 
     µAPR   < ( 1-γ*(1-α) )*APRglobal  
{ 

Reduce f by one level; 
Reset α  of the last level to 0; 

} 
Else { 

Increase f by one level; 
Increment α; 

} 
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The main idea in this code is to compare the last observed APC and APR 

against the “global” APC and APR (i.e., APC and APR captured when the 

processor is executing at the highest frequency). Then, based on the threshold 

factors defined by ����� and �� we conclude that the user-perceived performance is 

unchanged and try to reduce the frequency and subsequently power consumption. 

Otherwise, out of bound values of �APC and �APR suggest that user-perceived 

performance has suffered on the last interval due to low CPU frequency and it is 

increased accordingly to improve the user-perceived performance. 

The goal of the factor ��is to eliminate the possible ping-pong effect between 

two frequency states. If the processor has been at a state several times after which 

PICSEL had to increase the frequency, ��makes it harder to go down to that 

frequency level. Following every third (n=3) update to �, PICSEL reenters the 

initialization state. This feature of the algorithm ensures that PICSEL can adjust 

to a set of operating conditions very different from those present at initialization 

but at a rate that is maximally bounded by n and Ti. The constant parameters (Ti 

= 7 seconds, Tinit = 10 seconds) were set based on the experience of the authors 

using the system. α is initialized to zero for each of the frequency level and is 

incremented by 0.1 for each frequency boost. We used two variations of the 

PICSEL algorithm by fixing the ������������������and ������������������ which correspond to conservative 

PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL), respectively.  

Ideally, we would like to empirically evaluate the sensitivity of PICSEL 

performance to these parameters. However, it is important to note that any such 
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study would require having real users in the loop, and thus would be quite slow. 

Testing three values of five parameters on 20 users would require 243 days (based 

on 20 users/day and 25 minutes/user). For this reason, we decided to choose the 

parameters based on qualitative evaluation by the authors and then “close the 

loop” by evaluating the whole system with the choices. 

5.2.3 Implementation/Integration of PICSEL 

Currently, we have not integrated PICSEL with the OS, rather for our user 

studies, we manually give control to PICSEL. Once PICSEL is active, it executes 

client software that runs as a Windows toolbar task as well as an API that 

controls CPU frequency based on user perceived performance. In the client, we log 

the APC and APR at the background. The API uses these values to control CPU 

frequency. It is this implementation that we evaluate in the next section.  

In its current implementation, PICSEL has some limitations, which will be 

handled once it is integrated with the OS. Particularly, PICSEL should be 

activated only if the system is executing an interactive application. Hence, we first 

have to deal with detecting interactive applications, which will be handled through 

constant (but infrequent) monitoring of the device. For example, a daemon can 

monitor the APC/APR values every 10 seconds. Then, if this rate is above a 

threshold, we conclude that the current foreground application is an interactive 

one and activate the PICSEL frequency control. If the APC/APR value drops 

below a threshold, PICSEL will conclude that the interactive application is 

completed and give the control back to the Windows DVFS. In scenarios when the 
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display is static, PICSEL will detect that the rate of change in the display is below 

the threshold and give the control back to the Windows DVFS. On the other 

hand, if the machine runs a screen saver that causes significant changes on the 

screen, PICSEL will control the frequency. In such a case, the frequency will be 

reduced if there is no background job (and hence the reduction in the frequency 

does not cause a significant change on APC/APR), but will keep it high if a 

background job keeps the CPU busy (hence a change in the frequency will cause a 

significant change in APC/APR).   

We must note that running background jobs does not cause any problem for 

PICSEL. In fact, one of our applications targeted in the next section includes a 

non-interactive background job to prove that our concept is applicable in such 

cases. If there is a CPU-intensive background job, a reduction in the frequency 

causes a significant reduction in the APC (even if the interactive application itself 

is not compute intensive). Therefore, PICSEL will keep the frequency high. If, on 

the other hand, the background job is not CPU-intensive, the frequency can be 

safely reduced, which is exactly the action taken by PICSEL. 

5.3. Evaluation 
We now evaluate cPICSEL and aPICSEL schemes. We compare against the 

native Windows XP DVFS scheme, displaying reductions in power and 

temperature. In Section 5.3.7, we also present the results summarizing the user 

satisfaction. 
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Our evaluations are based on user studies, as described in Section 5.3.1. We 

trace the user’s activity on the system during the use of the applications and 

monitor the selections Windows DVFS, cPICSEL, or aPICSEL makes in response. 

For studies involving PICSEL, the cPICSEL and aPICSEL algorithms are used 

online to control the clock frequency in response to APC and APR values. In the 

rest of this section, we first describe a user study of PICSEL that provides both 

independent results and traces for later use. Next, we examine dynamic CPU 

power consumption, system power measurements (for a system driven from the 

user traces), and temperature measurements.  

PICSEL effectively employs user-perceived performance via APC and APR 

values and customizes processor frequency to the individual user. This typically 

leads to significant power savings compared to existing dynamic frequency schemes 

that rely only on CPU utilization as feedback. The frame buffer readings and the 

corresponding calculations for measuring user-perceived performance are 

infrequent, and generally results less than 2% computational overhead. We must 

note that PICSEL performs the APC and APR readings during user studies, hence 

all the results presented for the PICSEL (including power and user satisfaction) 

include this overhead. We would also like to point that a more efficient 

implementation or hardware support from the graphical interface would minimize 

this overhead and would increase the benefits observed from PICSEL even further.  
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5.3.1 Experimental Setup 

Our experiments were done using an IBM Thinkpad T43p with a 2.13 GHz 

Pentium M-770 CPU and 1 GB memory running Microsoft Windows XP 

Professional SP2. The Pentium M uses the second generation of Intel’s SpeedStep 

technology, in which six CPU frequency-voltage operating points are available.  

In all the studies, we make use of three application tasks, some of which are 

CPU intensive and some of which frequently block while waiting for user input:  

• Watching a 3D Shockwave animation using the Microsoft Internet Explorer 

web browser. The animation was stored locally. Shockwave options were 

configured so that rendering was done entirely in software on the CPU. 

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular sports game. 

The game was stored locally. There were no constraints on user gameplay.  

• Watching an HD quality movie trailer in Windows Media Player (WMP) 

while decoding another MPEG movie clip in the background. Both clips were 

stored locally and decoding was done in software on the CPU. 

We conducted a study with twenty users to evaluate the PICSEL schemes. 

We developed a user pool by advertising our studies within a private university. 

Some participating users were graduate students and some others were less 

experienced with computer use. The studies were double-blind and randomized 

(i.e., the order of schemes during the tests were randomized to eliminate any 

possible effect of “first-time” execution impact). The studies included intervention 
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by proctors between trials. Each user evaluation lasted about thirty minutes, and 

consisted of the user doing the following:  

• Filling out a questionnaire that asked the user to rate his or her level of 

experience in the use of PCs, Windows XP, DVD video, 3D animation, and 

FIFA 2005  

• Listening to an explanation of how to play FIFA 2005 and how to rate his or 

her satisfaction with each application instance 

• Watching the 3D Shockwave animation using cPICSEL, aPICSEL, and 

Windows DVFS (2 minutes each) 

• Playing FIFA 2005 using cPICSEL, aPICSEL, and Windows DVFS (3.5 

minutes each) 

• Watching the movie trailer using cPICSEL, aPICSEL, and Windows DVFS 

(2 minutes each). 

After each application, the users were instructed to assign one of five levels 

of satisfaction to their experiences with the system performance for each instance 

of an application. In other words, the users were not asked to rank the instances 

against each other. 

5.3.2 Frequency Results  

Figure 5.4 illustrates the performance of the two algorithms for three 

applications in our study. Each graph shows, as a function of time, the CPU 
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frequency for a randomly selected user (other users show the same trends although 

the exact values may be different). Notice that in all the applications, both 

versions of PICSEL were able to throttle down the processor as compared to the 

Windows DVFS scheme. The amount of frequency reduction varies from 

application to application. PICSEL is most effective for the 3D animation 

application. As illustrated in Figure 5.1and Figure 5.2, the 3D animation has least 

variation in APC and APR values at lower frequencies. As a result the PICSEL 

algorithm could reduce the CPU frequency to the lower states without affecting 

the user-perceived performance. The video application follows a similar trend. For 

the game, we observe little throttling. This is also expected as the APC values in 

Figure 5.1 degrade very quickly for the game. However, PICSEL algorithm can 

throttle down the frequency to lower frequency states in few cases. Overall, these 

results show that PICSEL can successfully adjust the throttling according to the 

user-perceived performance. Particularly, for a highly compute-intensive 

application (such as the game), the reduction in the frequency remains minimal. 

For other applications, the frequency can be reduced without affecting the user-

perceived performance. In Section 5.3.7, we also analyze the user satisfaction with 

the default Windows DVFS (which almost always uses the highest frequency) and 

PICSEL algorithms and show that the user happiness is not adversely affected for 

any of our target applications. 
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(a) 3D Shockwave animation 
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(b) Video 
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(c) FIFA game 

Figure 5.4. Frequency state diagram 
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(a) 3D Shockwave animation 
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(b) Video 
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(c) FIFA game 

Figure 5.5. The CPU dynamic power reduction with cPICSEL and aPICSEL over 
Windows DVFS 



 
 

182 

 

5.3.3 Power Measurements  

To analyze the effect of cPICSEL and aPICSEL on the power consumption 

of the system, we logged the frequency over time during the user studies described 

in the previous section. We then combine this frequency information with the 

offline profile and techniques described in Section 5.3.1 to derive CPU power 

savings for cPICSEL, aPICSEL, and the default Windows XP DVFS strategy. We 

have also measured the power consumption of the overall system, as described in 

Section 5.3.5. 

5.3.4 CPU Dynamic Power Reduction 

The dynamic power consumption of a processor is directly related to its 

frequency and supply voltage and can be expressed using the formula P = V2CF, 

which states that power is equal to the product of voltage squared, capacitance, 

and frequency. By using the frequency traces and the nominal voltage levels on our 

target processor [113], we calculated the relative dynamic power consumption. 

Figure 5.5 presents the CPU dynamic power reduction achieved by the PICSEL 

algorithms (cPICSEL and aPICSEL) for individual users. The rightmost bars 

correspond to the savings averaged across users. 

For the 3D Shockwave animation, we see mixed responses from the users, 

although on average we reduce power by 21.8%. On average, cPICSEL and 

aPICSEL independently reduce the power consumption by 15.3% and 28.2%, 

respectively. aPICSEL performs better as it allows a larger threshold for APC 

values over each interval. The results show a considerable variation among 
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different users. This can be explained by the fact that the control agent for APC 

calculation considers a sampling window of roughly 64x51 pixels at the center of 

the display window. The relative position of the shockwave player while the user 

watches the 3D animation plays a role in the calculation of APC and APR. It 

subsequently affects the decision taken by the PICSEL algorithm. 

For Video, cPICSEL and aPICSEL reduce power consumption by an 

average of 9.6% and 19.7%, respectively. This suggests that the Video application 

is more sensitive to the frequency throttling. User 19 is the only exception where 

aPICSEL results a power savings of 45.8%. There is also considerable variation 

among users for the FIFA game. Using conventional DVFS, the system always 

runs at the highest frequency. The PICSEL schemes try to throttle down the 

frequency over time. They therefore reduce the power consumption while achieving 

reduction in power, on average 2.6% and 6.7% for cPICSEL and aPICSEL, 

respectively. Note that PICSEL does not reduce the frequency for all the users. 

For example, cPICSEL does not reduce the frequency for user 19. Similarly, 

aPICSEL does not reduce the frequency for user 17. This is expected as for the 

game application for which the slope for the APC curve (Figure 5.1) is most steep 

and for these users the change in APC and APR never satisfied the threshold 

condition for frequency reduction.  

For all three applications, we see a large variation among users, but in all 

cases cPICSEL and aPICSEL lead to power savings over Windows DVFS. On 

average, aPICSEL reduces the dynamic power consumption by 18.2% for all three 
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applications. The cPICSEL scheme results a 9.1% power reduction aggregated over 

three applications and 20 users. 

 
Figure 5.6. System power measurement setup 

5.3.5 System power measurement 

To further measure the impact of our techniques, we replay the traces from 

the user studies described in Section 5.3.1 on the laptop platform. The laptop is 

connected to a National Instruments 6034E data acquisition board attached to the 

PCI bus of a host workstation running Windows (and the target applications), 

which permits us to measure the power consumption of the entire laptop 

(including other power consuming components such as memory, screen, hard disk, 

etc.). The sampling rate is set to 10 Hz. Figure 5.6 illustrates the experimental 

setup used to measure the system power. 
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(a) 3D Shockwave animation 
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(b) Video 
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(c) FIFA game 

Figure 5.7. The system power reduction with cPICSEL and aPICSEL over 
Windows DVFS 
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Figure 5.7 presents the system-level power savings over the default 

Windows DVFS for cPICSEL and aPICSEL schemes. In general, we see that the 

power savings of the system exhibits the same trends observed for dynamic power 

savings. For 3D Shockwave animation, cPICSEL and aPICSEL reduce power 

consumption by 16.8% and 25.7% on average, respectively. cPICSEL and 

aPICSEL reduce the power consumption by 8.0% and 14.5%, respectively for 

Video. For both the 3D animation and the Video, we see large variation among 

users. The FIFA game shows less variation among users. The high CPU overhead 

of this application restricts the PICSEL algorithms to throttle down the frequency. 

On average, we save 2.6% and 6.2% of the power consumption for cPICSEL and 

aPICSEL, respectively. 

On average, the power consumption of the overall system can be reduced by 

12.1% for all three applications. This improvement is achieved by the aPICSEL 

scheme. The cPICSEL scheme reduces the system power consumption by 7.1%, 

aggregated over 20 users and three applications. We must note that the dynamic 

CPU power savings presented in the previous section and the system power 

savings presented in this section cannot be directly compared because the previous 

section reports the dynamic power consumption of the CPU. This section, on the 

other hand, reports the measured power consumption of the laptop (which includes 

leakage power of the CPU as well as all the power consumption of other 

components in the laptop including memory, screen, hard disk, etc.). However, 

some conclusions can be drawn from the data in both sections. Applications that 
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originally result in high CPU power consumption tends to also observe high system 

power savings. Clearly, part of system power reduction comes from the decrease in 

the dynamic power consumption, but also the leakage is reduced when dynamic 

power consumption decreases (and hence temperature drops down).  

5.3.6 Changes in Peak Temperature 

 We used CPUCool [135] to measure CPU temperature in the system. 

Figure 5.8 shows the reductions in peak temperatures of the system when using the 

cPICSEL and aPICSEL schemes.  

In all cases, the cPICSEL and aPICSEL schemes lower the temperature 

compared to the Windows native DVFS scheme due to the power reductions we 

have reported in the previous sections. The maximum temperature reduction is 

seen in the case of the aPICSEL scheme used for the Shockwave application 

(16°C). On average, for all three applications, the cPICSEL and aPICSEL schemes 

reduce the peak temperature of the system by 1.7 °C and 4.3°C, respectively, 

aggregated over all 20 users.  
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(a) 3D Shockwave animation 
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(b) Video 
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(d) FIFA game 

Figure 5.8. Peak temperature reduction. 
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(a) 3D Shockwave animation 
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(b) Video 
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(c) FIFA game 

Figure 5.9. User ranking distribution. 
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5.3.7 User Satisfaction 

We now discuss the satisfaction levels with the Windows DVFS and 

PICSEL algorithms for three applications as reported by individual users. During 

the user study each participant was asked to give a satisfaction level from 1 to 5 (5 

being the most satisfactory performance) for each application. Figure 5.9 illustrates 

the ranks awarded by every user. cPICSEL algorithm outperforms Windows DVFS 

for all three applications when aggregated over 20 users. The t-test analysis of the 

results reveals that the difference is not due to chance with 90% confidence (i.e., 

cPICSEL statistically makes users happier). In the following, we will describe the 

reasons for these results. On the other hand, aPICSEL and Windows DVFS 

provide the same satisfaction (a t-test analysis identifies the two means to be 

identical with over 99% confidence). On average, aPICSEL scheme is rated highest 

for the game application (3.8) where it results least amount of power reduction. 

On the other hand, for the Shockwave application, maximum power reduction for 

the aPICSEL scheme came at a cost of least average rank (3.5).  

We noticed that cPICSEL scheme was ranked higher on average when 

compared to Windows DVFS although Windows DVFS runs the system at the 

highest frequency. User dissatisfaction caused by thermal emergencies is the main 

reason for this outcome. We ran an experiment in which FIFA 2005 was played 

under Windows DVFS until the user observed several distinct slowdown events. 

The results of this experiment are shown in Figure 5.10.  This figure shows 

processor temperature and frequency when FIFA 2005 is played until it triggers a 
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thermal emergency (about 1 minutes into the execution). At that point, the 

frequency is reduced to the lowest frequency. This causes a perceivable slowdown 

in game play. Once the emergency is over, the maximum allowed frequency is 

temporarily set to the second highest frequency. If the frequency line is followed, it 

is clear that this period lasts for about 30 seconds, after which the maximum 

allowed frequency is again set to the highest available frequency on the processor. 

This causes the temperature to rise again quickly and cause the consecutive 

emergencies. 

We have analyzed the traces from the user studies and found the time spent 

in the second-highest operating frequency. The amount of time spent (for both 

Windows DVFS and PICSEL) provides additional evidence for thermal 

emergencies, since the only time DVFS will throttle the frequency below what 

CPU utilization would prescribe is in the case of the temperature crossing a 

thermal trip point [136].  

Since cPICSEL and aPICSEL reduce the occurrence of thermal emergencies, 

PICSEL was able to provide a better user satisfaction, as emergency related 

frequency reductions are minimized. As a result, for applications with high 

computational overload, the PICSEL scheme may deliver better user-perceived 

performance by  reducing the probability of thermal throttling in the CPU. The  

satisfaction results also support this claim: aPICSEL provides the highest 

satisfaction for the game on average, because for this highly computationally 
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intensive application, aPICSEL allows the highest reduction in temperature (and 

related emergencies). 
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Figure 5.10. Thermal emergency under Windows DVFS 

5.4. Related Work 
Dynamic voltage and frequency scaling (DVFS) is an effective technique for 

microprocessor energy and power control for most modern processors [113], [112]. 

Energy efficiency has been a major concern for mobile computers. Fei et al. [114] 

proposed an energy aware dynamic software management framework that 

improves battery utilization for mobile computers. However, this technique is only 

applicable to highly adaptive mobile applications. Researchers have proposed 

algorithms based on workload decomposition [115], but these tend to provide 

power improvements only for memory-bound applications. Wu et al. [116] 

presented a design framework of a run-time DVFS optimizer in a general dynamic 

compilation system. The Razor [117] architecture dynamically finds the minimal 

reliable voltage level. Dhar et al. [118] proposed adaptive voltage scaling that uses 
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a closed-loop controller targeted towards standard-cell ASICs. Intel Foxton 

technology [119] provides a mechanism for select Intel Itanium 2 processors to 

adjust core frequency during operation to boost application performance. However, 

unlike PICSEL it does not perform any dynamic voltage setting. To the best of 

our knowledge, none of the previous DVFS techniques consider the user-perceived 

performance.  

Other DVFS algorithms use task information, such as measuring response 

times in interactive applications [120] and [121] as a proxy for the user. Vertigo 

[122] monitors application messages and can be used to perform the optimizations 

implemented in our study (although to the best of our knowledge this has not been 

studied). However, compared to Vertigo, our approach provides a much easier 

metric/framework to use. Xu et al. proposed novel schemes [123] minimizing 

energy consumption in real-time embedded systems that execute variable 

workloads. However, they try to adapt to the variability of the workload rather 

than to the users. Gupta et al. [100] and Lin et al. [101] demonstrated a high 

variation in user tolerance for performance in the scheduling context, variation 

that we believe holds for power management as well. In addition, Mallik et al. 

[137] showed that it is possible to utilize direct user feedback to control a power 

management scheme, i.e., allow the user to control the performance of the 

processor directly.  However, such a scheme has the potential to annoy the user 

while gathering feedback, whereas our scheme relies on inferring the user-perceived 

performance and hence can be applied transparently in the system. Anand et 
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al. [126] discussed the concept of a control parameter that could be used by the 

user. However, they focus on the wireless networking domain, not the CPU. 

Second, they do not propose or evaluate a user interface. 

Previous work [125] has explored using OS-level knowledge about screen 

content to reduce the power consumption of the screen itself, however no work has 

been done using knowledge of screen content to control the voltage and frequency 

of a processor. Another work [124] has looked at OS-level knowledge of user-

generated events to control a DVFS scheme but has not used knowledge of screen 

content. Our work combines these two approaches and uses detailed screen 

information to control the CPU’s voltage and frequency levels. 

In a study of user perception of both audio and video quality, it is found 

that the loss of several consecutive video frames would decrease user satisfaction 

up to a certain level, while an accumulation of video losses over the course of a 

video would steadily decrease user satisfaction [138]. User dissatisfaction at 

variations in the frame rate lay in between. Frame rate also has a significant effect 

on user satisfaction, with satisfaction increasing logarithmically with the number of 

frames displayed per second [139]. Finally, Gulliver and Ghinea found that both 

video delay and jitter cause a significant reduction in users’ perception of the 

quality of a video [134]. However, none of these results were utilized to control 

processor resources.  
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5.5. Conclusion 
Any architectural optimization (performance, power, reliability, security, 

etc.) ultimately aims to satisfy the user. The success of such an optimization relies 

upon the accuracy of its performance metrics as proxies for user satisfaction. In 

this work, we argue that rather than using metrics “close to metal” (such as 

instruction throughput or CPU utilization), architectures should optimize for 

metrics that are “close to flesh”. To evaluate such an approach, we have developed 

a new power management technique: PICSEL (Perception-Informed CPU 

performance Scaling to Extend battery Life). This technique reduces CPU power 

consumption in comparison with existing DVFS techniques. Extensive user studies 

show that we can reduce power consumption of our target laptop on average by 

7.1% for a conservative approach (cPICSEL) and 12.0% for the aggressive version 

(aPICSEL) compared to the Windows XP DVFS scheme. Furthermore, CPU 

temperatures can be markedly decreased through the use of our techniques. User 

studies also revealed that the difference in overall user satisfaction between the 

more aggressive version of PICSEL and Windows DVFS were statistically 

insignificant, whereas the conservative version of PICSEL actually improved the 

users’ overall satisfaction when compared to Windows DVFS. 
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CHAPTER 6 

CONTRIBUTIONS AND CONCLUSIONS 

 We have presented the framework for holistic architecture that optimizes 

system performance by utilizing characteristic of the applications, users and 

materials. We have shown that holistic architecture is capable of producing system 

architectures that is not achievable using traditional microarchitectural 

optimization.  

The main contribution of the holistic architecture is inclusion of additional 

abstraction layers into the whole spectrum of computer architecture. Traditionally 

computer architecture tries to optimize system performance using resources that 

are ‘within the box’. However, the user is at the top of the pyramid of all the 

computing system structure. Although he is not a part of the box, his satisfaction 

is the ultimate objective of every architectural optimization. To the best of our 

knowledge, our work [23, 140, 141] was the first one to propose architectural 

optimization based on individual user’s preferences. By including the human factor 

in the abstraction layer of computer architecture, we have produced performance 
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enhancement and power consumption reduction in a computer system that is not 

possible otherwise.  

System performance is typically quantified using that can be measured 

using metrics that are derived from low-level knowledge such as instruction 

throughput, hardware utilization. These metrics serve the role of proxies for user. 

However, every individual perceives system performance differently. Our PICSEL 

project was pioneering in estimating user-perceived performance using proxies 

(changes in display) that sit closer to the ‘body’ as compared to the ‘metal’.  

The beauty of the proposed holistic approach is the consideration of 

materials, the lowest layer present in computing system as well as the users, the 

highest layer. As technology scales further, variations in manufacturing technology 

has become prominent. The PDVS approach is one of the possible alternatives to 

utilize process variation to the advantage of the consumer. Recent industry trends 

in power management [119] for modern microprocessors support our assumption.  

We questioned the basic assumption about hard constraint on system 

reliability. Our work on Clumsy Processors was the first to propose a system that 

violates the assumption that a circuit should work flawlessly even at the worst 

case scenario. We improved overall system performance and energy consumption 

by trading off reliability. The microarchitecture strategy for the next generation is 

called resilient microarchitecture that continually detects errors, isolates faults, 

confines faults, reconfigures the hardware, and thus adapts. If we can make such a 
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strategy work, there is no need for one-time factory testing or burn-in, since the 

system is capable of testing and reconfiguring itself to make itself work reliably 

throughout its lifetime. Clumsy Processing is one of the first steps towards such a 

resilient architecture.  

Our work on intelligent task allocation [22] based on statistical nature of 

networking module processing was novel due its consideration for variability in 

processing time. Variation in execution time is an inherent property of any 

modular task. We can use a similar approach to solve the generic problem of task 

allocation in Chip Multiprocessors or any other scenario where tasks need to be 

distributed among a number of processing resources. We can adapt to similar 

approaches to achieve performance enhancement in any domain where data 

parallelism is present. Application domains exhibiting modular nature (e.g., data 

mining) may largely benefit from the proposed techniques. 

Ideally a computing system should be heterogeneous so that it can support 

the wide variety of platforms, networks and services. It should be capable of 

adapting to user preferences, ensure correctness in a variable environment and 

allow optimized performance in a reconfigurable environment. The holistic vision 

of system architecture would provide an efficient solution to this multifaceted 

requirement.  

We believe that satisfaction of the user is the prime objective of any kind of 

automation. Typically the surroundings of a user can vary from a resource-rich 



 
 

199 

 

environment (working with workstations) to resource-constraint settings (using a 

smart-phone). The generic applicability of holistic architecture can be implemented 

to this whole gamut of environment. Its philosophy is applicable on different 

application domains – embedded systems, networking hardware, high performance 

computing, to name a few. We feel the introduction of such hybrid architecture 

can benefit the whole population of computing systems. The new generation of 

autonomic system needs to fulfill two major constraints – fault-tolerance and 

fidelity-awareness.  A fault tolerant system needs to detect and recover from fault 

for to meet the correctness objective. On the other hand, a fidelity-aware 

computing ensures the system can perform optimally with variability in available 

resources (CPU performance, power, network bandwidth, memory space). We have 

explored novel microarchitecture techniques that improve system performance 

through optimizations at every abstraction level (user, application, operating 

system, assembler, firmware, hardware and materials). We believe the philosophy 

of holistic computing architecture would be one of the most effective tools in the 

design of next generation computing system.   

If you found this work interesting, and have additional questions, please 

contact me. 

Arindam Mallik 
arindam@eecs.northwestern.edu 
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