

NORTHWESTERN UNIVERSITY

Holistic Computer Architectures based on Application, User, and
Process Characteristics

A DISSERTATION
SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Electrical and Computer Engineering

By
Arindam Mallik

EVANSTON, ILLINOIS
June 2008

2

© Copyright by Arindam Mallik 2008

All Rights Reserved

3

ABSTRACT

Holistic Computer Architectures based on Application, User, and

Process Characteristics

Arindam Mallik

As we move into deeper sub-micron technologies, the complexity of pushing

the circuit performance further is becoming an important obstacle. To achieve

better performance, there is an increasing need for collaboration of higher level

(e.g. microarchitecture-level) and circuit level optimizations. Traditionally for a

computer system, applications lie at the top of the whole spectrum. Previously,

researchers have looked into application characteristics to optimize the

performance of the system. The ever-increasing need for improvement in system

performance and power utilization led me to believe that we need to look beyond

the application level to utilize the system resources more intelligently. Note that,

the primary objective of a computing system is to satisfy the user’s expectations.

Previous researchers have worked into user satisfaction while interacting with a

system. But their objective was to dynamically optimize the operating system

behavior to satisfy the user. We believe that including individual user’s preferences

to optimize system hardware utilization would lead to better performance and

power. The results presented in this work support this hypothesis. Additionally,

analysis of the materials that lies at the lowermost end of the system spectrum

4

opens up a number of opportunities to optimize the system performance. Every

individual piece of hardware possesses unique properties even after going through

the same manufacturing technology. Therefore, the “one-size-fits-all” approach of

current DVFS schemes is suboptimal in the presence of process variations. We

have proposed architectural optimization based on process characteristics of

individual CPU. Circuit designers typically consider the worst case scenario to

predict the default voltage properties of a processor chip. The hard constraint of

reliability has created a gap between the default value and the threshold where a

circuit can work flawlessly. We have shown that treating the correctness as an

objective can improve the system performance with noted reductions in power

consumption. The results obtained from these research works have led us to

propose the idea of the “holistic architecture”.

5

ACKNOWLEDGEMENTS

“Learn from yesterday, live for today, hope for tomorrow. The important thing is to

not stop questioning. Curiosity has its own reason for existing.”

- Albert Einstein

Research to me is a lifelong journey en route to the source of light of

knowledge. A journey is easier when we travel together. Interdependence is

certainly more valuable than independence. This dissertation is the result of four

years of work whereby I have been accompanied and supported by many people. It

is a pleasant aspect that I have now the opportunity to express my gratitude for

all of them.

First and foremost, I would like to thank my advisor, Gokhan Memik.

Gokhan, your invaluable suggestions, pointed directions and lucid explanations

have helped me in every single step while working on this dissertation. You are my

constant source of inspiration. You have shown me the light whenever I seem to

have stuck in a dark corner. You always seem to have simple answers to problems

that looked so complicated to me. I am really fortunate to have you by my side for

the entire journey.

I would also like to thank the other members of my PhD committee who

have collaborated with me and took effort in reading and providing me with

6

valuable comments on this thesis: Robert P. Dick, Peter A. Dinda, Yehea Ismail,

Russ Joseph and Seda Memik. I thank you all.

Thanks are due for Bin Lin and Jack Cosgrove with whom I have

collaborated while working on this dissertation. I would like to use this

opportunity to thank my fellow labmates - Abhishek, Berkin, Matt, Prabhat,

Serkan, and Yu. For this research, data were essential. I collected a lot of data.

They helped me wholeheartedly. My roommates and friends at Northwestern

deserve thanks for helping me to cruise through the graduate life –Debjit, Peter,

Paramita, Rubina, Shantanu, and Som.

My journey to this stage of the academic life has been motivated with the

guidance and support of some wonderful persons I have come across my life. I

express deep gratitude to Ajit Ghatak and Ajay Bhattacharya – two finest

mentors. I am also thankful to all my other teachers, whose names I could not

include here.

I should not have been writing this dissertation without my baba,

Aniruddha Mallik who formed part of my vision and taught me the good things

that really matter in life. I remember his exact words after my high school

graduation, “If you aim to climb Mount Everest, you would at least reach The

Kanchanjungha”. I fondly remember those starry nights at our rooftop when we

shared many of our dreams. I wish he would have been here to share this golden

moment with me. The seeds that he had sown in my mind have been thoroughly

7

nurtured by my mom, Maya and didi, Ankita. I am really proud to have them as

my family. I am very grateful to my fiancée Rima, for her unconditional love and

relentless support during the PhD period. She did not complain about my ‘last few

weeks of dissertation’ which actually lasted almost a year. My life would have been

incomplete without her in my side all these years.

Now it is time to thank the abstract objects and other forms of life who

have contributed greatly for all these years. Thanks to my cubicle-mate, a goldfish

called Jharna has been constantly vigilant on my work. I would like to thank the

city of Evanston, for the wonderful life it provided outside my lab. I would like to

thank my favorite Parker pen that has been my constant companion since the high

school days.

Finally, I pranaam God – Father, Son and Spirit - for His unconditional

love, guidance, sustenance, and strength. He is the source of all my inspiration,

dedication and strength to complete this work.

Arindam Mallik

Northwestern University
October, 2007

8

To the loving memory of my father

9

CONTENTS

CHAPTER 1 .. 15
Introduction to Holistic Architecture .. 15

1.1. Motivation for a holistic architecture .. 16

1.2. Correctness-aware Application Adaptive Execution................................ 20

1.3. Task Allocation based on statistical variation... 21

1.4. User-Experience Driven Optimizations.. 21

1.5. User-Perceived Performance Evaluation.. 22

1.6. Process-aware Voltage Setting... 23

1.7. Dissertation Overview ... 24

CHAPTER 2 ... 25
Application-Level Error Measurements for Application Specific Processors 25

2.1. Analytical Model of Error Probability... 28

2.2. Sources of Errors ... 36

2.3. Error Classification.. 37

2.4. Applications and Error Metrics ... 38

2.5. Error Injection and Measurement.. 42

2.6. Simulation Environment ... 45

2.7. Simulation Results .. 46

2.8. Related Work .. 52

CHAPTER 3 ... 54
Reliability-Performance Tradeoff Analysis .. 54
A. Clumsy Processing in Packet Processors .. 56

3.1. Introduction .. 56

3.2. Applications and Error Measurement.. 60

3.3. Clock Variation and Fault Detection .. 61

3.4. Experimental Results .. 69

3.5. Previous Work on Resilient Architectures... 81

B. Statistical Task Allocation in Multicore Network Processors 83
3.6. Modularity in Network Applications ... 87

3.7. Implementation Gap ... 89

10

3.8. Implementation Gap Closure Approaches ... 90

3.9. Applications .. 94

3.10. Probability Distribution of Packets ... 96

3.11. Statistical Task Allocation in NPs... 100

3.12. Experiments... 107

3.13. Related Work on Task Allocation ... 113

3.14. Conclusions.. 115

CHAPTER 4 ... 117
User-Directed Power Management .. 117

4.1. User-Driven Frequency Scaling ... 121

4.2. Process-Driven Voltage Scaling ... 130

4.3. Evaluation... 135

4.4. Discussion.. 151

4.5. Related Work .. 155

4.6. Conclusion... 158

CHAPTER 5 ... 159
User-perceived performance evaluation ... 159

5.1. User-Perceived Performance.. 162

5.2. PICSEL Framework .. 168

5.3. Evaluation... 175

5.4. Related Work .. 192

5.5. Conclusion... 195

CHAPTER 6 ... 196
Contributions and Conclusions.. 196
REFERENCES ... 200

11

LIST OF FIGURES

Figure 1.1. Abstraction levels in traditional computer architecture 17

Figure 1.2. Abstraction levels in holistic computer architecture. 19

Figure 2.1. Voltage at a circuit node at two different frequencies 29

Figure 2.2. Decrease of voltage swing with increase of frequency 29

Figure 2.3. A simple D Flip-Flop 30

Figure 2.4. Noise immunity curves of a D flip-flop at various voltage swings 30

Figure 2.5. Noise amplitude at various switching combination of neighboring lines

of a victim line 32

Figure 2.6. Probability of error at different cycle time 34

Figure 2.7. Probability of error at various voltage swings 34

Figure 2.8. Error Generation probability for Route application 48

Figure 2.9. Error Generation probability for DRR application 48

Figure 2.10. Error Generation probability for TL application 48

Figure 2.11. Error Generation probability for NAT application 49

Figure 2.12. Error Generation probability for MD5 application 49

Figure 2.13. Error Generation probability for CRC application 49

Figure 2.14. Error Generation probability for URL application 50

Figure 2.15. Fatal Error probability for different applications 52

Figure 3.1. Transistor Integration Capacity 55

Figure 3.2. Error Probability of ROUTE application 71

Figure 3.3. Error Probability of NAT application 72

Figure 3.4. Fatal error probabilities for different clock rates. 74

Figure 3.5. Energy-delay2-fallibility2 product for the simulated configurations,

the dynamic configuration, and the static configuration with Cr = 1, 0.75, 0.5,

and 0.25 for the ROUTE application. The bars represent the relative energy-

delay2-fallibility2 product with respect to Cr = 1 with no-detection. 77

12

Figure 3.6. Energy-delay2-fallibility2 product for the simulated configurations, the

dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5,

and 0.25 for the CRC application. 77

Figure 3.7. Energy-delay2-fallibility2 product for the simulated configurations, the

dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5,

and 0.25 for the MD5 application. 77

Figure 3.8. Energy-delay2-fallibility2 product for the simulated configurations, the

dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5,

and 0.25 for the TL application. 78

Figure 3.9. Energy-delay2-fallibility2 product for the simulated configurations, the

dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5,

and 0.25 for the DRR application. 78

Figure 3.10. Energy-delay2-fallibility2 product for the simulated configurations,

the dynamic configuration, and the static configurations with Cr = 1, 0.75,

0.5, and 0.25 for the NAT application. 78

Figure 3.11. Energy-delay2-fallibility2 product for the simulated configurations,

the dynamic configuration, and the static configurations with Cr = 1, 0.75,

0.5, and 0.25 for the URL application. 79

Figure 3.12. Energy-delay2-fallibility2 product for the simulated configurations,

the dynamic configuration, and the static configurations with Cr = 1, 0.75,

0.5, and 0.25 the average application. 79

Figure 3.13. Click configuration for TTL decrement 89

Figure 3.14. Implementation Gap 91

Figure 3.15. Click configuration tree for the IPV4Router application 95

Figure 3.16. Illustration of module distribution in IPV4Router application 102

Figure 3.17. Processor throughput for DRR application 110

Figure 3.18. Processor throughput for RED application 110

Figure 3.19. Processor throughput for Home_Node application 110

Figure 3.20. Processor Throughput in Route application 110

13

Figure 3.21. Resource Utilization in DRR application 112

Figure 4.1. User pessimism. 124

Figure 4.2. The frequency for UDFS schemes during FIFA game for a

representative user. 128

Figure 4.3. Frequency over time for UDFS1 aggregated over 20 users. 138

Figure 4.4. Frequency over time for UDFS2 aggregated over 20 users. 139

Figure 4.5. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP

DVFS (CPU Dynamic Power). Chebyshev bound-based (1-p) values for

difference of means from zero are also shown. 143

Figure 4.6. System Power Measurement Setup 146

Figure 4.7. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP

DVFS (measured system power with display off). Chebyshev bound-based

(1-p) values for difference of means from zero are also shown. 148

Figure 4.8. Mean and peak temperature measurement. 150

Figure 4.9. Power improvement in the multitasking environment. Chebyshev

bound-based (1-p) values for difference of means from zero are also shown. 155

Figure 5.1. IPS and APC curve 165

Figure 5.2. APR curves for the three applications 167

Figure 5.3. Graphics pipeline in a modern PC 169

Figure 5.4. Frequency state diagram 180

Figure 5.5. The CPU dynamic power reduction with cPICSEL and aPICSEL

over Windows DVFS 181

Figure 5.6. System power measurement setup 184

Figure 5.7. The system power reduction with cPICSEL and aPICSEL over

Windows DVFS 185

Figure 5.8. Peak temperature reduction. 188

Figure 5.9. User ranking distribution. 189

Figure 5.10. Thermal emergency under Windows DVFS 192

14

LIST OF TABLES

Table 2-A. NetBench Applications and Their Properties 40

Table 2-B. Fallibility Factor of Different Applications 51

Table 3-A. Fallibility Factor of Different Applications 74

Table 3-B. Important characteristics of representative Network Processor

Designs: exec. cores is the number of execution cores, and parallelism

technique is the technique(s) used for task or instruction level parallelism

(MT: Multi-Threading, VLIW: Very-Long Instruction Word) in the execution

cores 88

Table 3-C. Probability Distribution of IPV4Router Elements 97

Table 3-D. Probability Distribution of Application Elements 98

Table 3-E. Probability Distribution of IPV4Router Stages 100

Table 4-A. Minimum stable Vdd for different operating frequencies and

temperatures 133

Table 4-B. Power reduction for Windows DVFS and DVFS+PDVS 141

Table 4-C. Average number of user events. 151

Table 4-D. Number of voltage transitions 153

Table 5-A. User-Perceived Performance Metrics 165

15

CHAPTER 1

INTRODUCTION TO HOLISTIC ARCHITECTURE

Computer architecture is the science and art of selecting and

interconnecting hardware components to create computers that meet functional

performance and cost goals. In computer engineering, it is the conceptual design

and fundamental operational structure of a computer system. Computer

architecture is a blueprint and functional description of requirements (especially

speeds and interconnections) and design implementations for the various parts of a

computer focusing largely on the way by which the central processing unit (CPU)

performs internally and accesses addresses in memory.

The exact form of a computer system depends on the constraints and goals

for which it was optimized. Computer architectures usually trade off standards,

cost, memory capacity, latency and throughput. Sometimes other considerations,

such as features, size, weight, reliability, expandability and power consumption are

factors as well.

The most common optimization scheme carefully chooses the bottleneck

that most reduces the computer's speed. Ideally, the cost is allocated

16

proportionally to assure that the data rate is nearly the same for all parts of the

computer, with the most costly part being the slowest. This is how skillful

commercial integrators optimize personal computers.

1.1. Motivation for a holistic architecture
Effectively, computer architecture serves as an interface between technology

trends and marketplace demands. It delivers a computing system optimized as per

the needs of the industry a.k.a. the users. Over the years, the optimizations

objectives have been changed based on the innovations in the field of IC

technology. During the 80’s, area optimization was the main research objective for

both academic and industrial researchers [1, 2]. As a result, innovations in

computer architecture resulted in chips optimized for area. Over the 90’s, power

has been the key bottleneck for state of the art technologies [3, 4]. Subsequently,

architectures proposed over that decade have been primarily focused towards low

power solutions. As we moved into the new century, reliability has been detected

as one of the primary bottlenecks for improving system performance [5-8]. As a

result, we observe a trend towards reliability-aware architectures in the last few

years. Hence, the design challenges in computer architecture has mutated over

time. The computer architects constantly explore new ways to satisfy the market

demand.

The innovations in computer architecture and progress of Silicon

manufacturing technology are closely inter-related [9]. Constant improvements in

CMOS technology since the 70’s has helped the computer architects to come up

17

with faster, denser, cooler and cheaper computing systems. However, we have

reached an important juncture of technological innovation history where

traditional architectural innovations are facing an inevitable halt due to inherent

changes in the manufacturing technology. In this dissertation, we have proposed

additional abstraction layers that can result in system architecture that is not

possible otherwise.

Traditionally, a computer system is usually represented as consisting of five

abstraction levels: hardware, firmware, assembler, operating system and

applications [10]. Figure 1.1 presents the organization of abstraction layers in

traditional computer architecture.

Figure 1.1. Abstraction levels in traditional computer architecture

As we move into deeper sub-micron technologies, the complexity of pushing

the circuit performance further is becoming an important obstacle [11, 12]. To

achieve better performance, there is an increasing need for collaboration of higher

18

level (e.g. microarchitecture-level) and circuit level optimizations [13, 14].

Traditionally for a computer system, applications lie at the top of the whole

spectrum [10]. Previously, researchers have looked into application characteristics

to optimize the performance of the system [15, 16]. The ever-increasing need for

improvement in system performance and power utilization led me to believe that

we need to look beyond the application level to utilize the system resources more

intelligently. My research questions this fundamental definition about computer

system. We propose a holistic computer architecture that considers two new layers

lying at two extreme ends of the current set of abstraction levels – users and

materials. Users lie at the top of the abstraction levels interacting directly with the

applications. On the other hand, due to process variation every individual

processor shows a variation from the default behavior specified by the processor

vendor. Figure 1.2 summarizes the modified organization of newer abstraction

levels. As this system architecture optimizes the system performance utilizing

characteristics of the user, applications and materials in a holistic manner, we term

it as ‘holistic architecture’.

19

Figure 1.2. Abstraction levels in holistic computer architecture.

Note that, the primary objective of a computing system is to satisfy the

user’s expectations. Previous researchers have worked into user satisfaction while

interacting with a system[17, 18]. But their objective was to dynamically optimize

the operating system behavior to satisfy the user. We believe that including

individual user’s preferences to optimize system hardware utilization would lead to

better performance and power. The results presented in this dissertation support

this hypothesis. Additionally, analysis of the materials that lies at the lowermost

end of the system spectrum opens up a number of opportunities to optimize the

system performance. Every individual piece of hardware possesses unique

properties even after going through the same manufacturing technology. Circuit

designers typically consider the worst case scenario to predict the default voltage

users

materials

20

properties of a processor chip. The hard constraint of reliability has created a gap

between the default value and the threshold where a circuit can work flawlessly.

We have shown that treating the correctness as an objective can improve the

system performance with noted reductions in power consumption. The rest of the

chapter summarizes major contribution of this dissertation.

1.2. Correctness-aware Application Adaptive Execution
We have looked into the trade-off analysis between reliability of a processor

and its performance [19-21]. This research was aimed towards the development of a

new programming model for network processors that would act as a bridge

between the circuit designers and the computer architects. My work has

questioned the traditional assumption about reliability and proposed an analysis

which has been proven to effective in improving the system performance.

Traditionally, the circuit designers make sure of the fact that the designed

chip should work at the worst case scenario. We have questioned this basic

assumption about reliability. The reliability of the system has been compromised

to gain in terms of performance. Please note that, while loosening the strict

constraint on reliability, we have made sure that the system should not crash. We

proposed the design and utilization of clumsy packet processors. We introduced a

realistic model that determines the probability of a fault for a given cycle time of a

cache and show that the delay of the cache and the energy consumed by the cache

can be reduced significantly without incurring a large penalty on faulty behavior.

Using simulation, we investigated an optimal point for trading off the reliability

21

for reducing cycle time of the data cache in a representative architecture.

Moreover, a scheme is implemented to dynamically adjust the operation frequency

of the data cache to achieve the desired objective (e.g., reduced energy).

1.3. Task Allocation based on statistical variation
We have proposed a task allocation scheme [22] that utilizes the probability

distribution of the execution times of different modules in the networking

applications. The task allocation scheme utilized the modular nature of networking

applications. The goal for the research is to minimize the effects of execution time

variation. Variation in execution time is an inherent property of processing. The

proposed scheme can estimate this variation for different parts of the code and

perform the task allocation accordingly. Results reveal several important

characteristics of the proposed schemes. First, they show that the base task

distribution scheme achieves high levels of scalability. In addition, the extended

processing time and replication scheme help to improve the performance.

1.4. User-Experience Driven Optimizations
To explore the role played by the human factor in computer architectures,

individual user’s preferences over the system performance is analyzed during

execution of different applications. A double blinded user study reveals that

personal preferences vary greatly among users (and that a user’s preferences vary

dynamically during application run-time) [23, 24]. Existing Dynamic Voltage and

Frequency Scaling (DVFS) techniques in high-performance processors select an

operating point (CPU frequency and voltage) based on the utilization of the

22

processor. While this approach integrates OS-level control, such control is

pessimistic about the user. Indeed, it ignores the user, assuming that CPU

utilization is a sufficient proxy. A high CPU utilization leads to a high frequency

and high voltage, regardless of the user’s satisfaction or expectation of

performance.

To remedy this limitation, we have developed User Driven Frequency

Scaling (UDFS) that dynamically adapts CPU frequency based upon direct user

feedback – as opposed to tracking CPU utilization, as is done by current methods.

This dynamic power management scheme automatically adapts to different users

and applications. UDFS effectively employs user feedback to customize processor

frequency to the individual user. This typically leads to significant power savings

compared to existing dynamic frequency schemes that rely only on CPU utilization

as feedback. The amount of feedback from the user is reasonable, and declines

quickly over time as an application or set of applications is used. Hence, it can

reduce power consumption while still achieving high user satisfaction.

1.5. User-Perceived Performance Evaluation
Any architectural optimization (performance, power, reliability, security,

etc.) ultimately aims to satisfy the user. The success of such an optimization relies

upon the accuracy of its performance metrics as proxies for user satisfaction.

Typically, such metrics are derived from low-level knowledge such as instruction

throughput, hardware utilization, or operating system calls even though this

knowledge is usually hidden from the user. We propose to derive these metrics not

23

from information that is “close to metal” and hidden from the user but rather with

information that is “close to flesh” and apparent to the user. We describe and

evaluate PICSEL, a dynamic voltage and frequency scaling (DVFS) technique

that uses measurements of variations in the rate of change of a computer’s

displayed screen to estimate user-perceived performance. The adaptive algorithms,

one conservative and one aggressive, use these estimates to dramatically reduce

operating frequencies and voltages for interactive applications while maintaining

performance at a satisfactory level for the user. This is a collaborative project

whose results have been shared by myself, and a fellow graduate student, Jack

Cosgrove. My objective during this research was to explore the microarchitectural

innovations involved in user-aware computing. Jack was primarily involved with

the architecture of the display device of a system.

1.6. Process-aware Voltage Setting
Existing DVFS techniques are pessimistic about the CPU. They assume

worst-case manufacturing process variation and operating temperature by basing

their policies on loose worst-case bounds given by the processor manufacturer.

However, as the manufacturing technologies are getting smaller, this conservative

assumption becomes an important bottleneck. As transistors are reduced in size, it

becomes harder to control variations in device parameters such as channel length,

gate width, oxide thickness, and device threshold voltage. Therefore, the “one-size-

fits-all” approach of current DVFS schemes is suboptimal in the presence of

process variations.

24

We have developed a new power management technique, Process-Driven

Voltage Scaling (PDVS). It creates a custom mapping from frequency and

temperature to the minimum voltage needed for stability. It adapts to process

variation, permitting processors to operate at their lowest stable voltages. This

mapping is then used online to choose the operating voltage by taking into account

the current operating temperature and frequency.

1.7. Dissertation Overview
The remainder of this dissertation is as follows. In CHAPTER 2, we present

an analytical model that determines the probability of a fault in a circuit element

for a given cycle time. Furthermore, we develop a framework to analyze and

quantify the effect of hardware faults on networking applications. CHAPTER 3

discusses a novel clumsy processing environment where the hard reliability

constraints are unleashed to gain in terms of system performance and power. The

modular nature of networking applications and intelligent task allocation based on

such properties are discussed in later part of CHAPTER 3. CHAPTER 4

demonstrates how direct user feedback can optimize a system’s performance.

Additionally we have shown how power management schemes can be benefited by

customizing a CPU based on process characteristics. The evaluation of user-

perceived performance and its utilization in a smart power management scheme is

discussed in CHAPTER 5. Overall contributions of the dissertation are

summarized in CHAPTER 6.

25

CHAPTER 2

APPLICATION-LEVEL ERROR MEASUREMENTS FOR
APPLICATION SPECIFIC PROCESSORS

There is an inherent possibility of fault occurrence in any system. The

sources for these faults can be different - they may arise from adverse

environmental conditions [25], physical hardware defects, electronic noise,

incorrect device utilization, or logical design flaws [26]. In addition, modern

processors are advocating for aggressive scaling of the supply voltage (Vdd) and use

smaller manufacturing technologies. This will increase the probability of fault

occurrence. Increasing clock rate and the use of flip-chip packaging are expected to

have adverse effects. Moreover, even if the probability of faults for a single

transistor can be kept constant, the probability of faults in a processor will

increase in parallel with the number of transistors on a chip. While it is critical to

avoid these faults with careful circuit design and packaging, they can still occur

and need to be addressed.

The effect an error has on a system is largely dependent on the hardware

application. In most cases, omitting errors is not an option, i.e., the processor

should be designed to capture and eliminate faults. This is the inherent nature of

26

the user expectation - a desktop processor or server is expected to work

continuously for days or weeks without losing any data. In such cases, hardware

faults are not acceptable. However, for other domains—such as networking and

media applications—a certain level of error is acceptable, and the integrity of the

system’s behavior can be maintained despite potential faults. This is also related to

the properties of the systems: networking software/systems are implemented with

the assumption that the hardware can fail (e.g., routers can drop packets).

Therefore, faults at a certain level are acceptable for such processors. In our work,

we present a methodology to classify and measure the effect of hardware errors on

networking applications.

Under the presence of faults, even if the system seems to be behaving

correctly from outside, its operation may be affected. As a result, the system will

operate differently depending on what kind of data becomes corrupted. For

instance, in the presence of electronic noise, a single piece of transient data may

get corrupted. This affects circuit behavior only momentarily. On the other hand,

a static data element might be damaged—such as a lookup table, which is used for

every packet operation that is processed by the system. This would affect the

system for a longer period of time. Additionally, recovering from such errors is

intuitively more difficult.

In this chapter, we highlight the need for application-level characterization

of hardware faults. Particularly, we measure the susceptibility of Network

Processors (NPs) to faults and their resulting behavior. Several applications from

27

the NetBench benchmarking suite [27] are studied and error metrics for each of

these applications have been defined.

We start with building an analytical model that relates fault probability in

a circuit element with the clock frequency. It is followed by a study where we

introduce cache faults based on the analytical model and measure their effect on

these applications. NetBench suite consists of a variety of applications that can be

used to simulate a range of network processors’ functions. Among these are

routing, encryption, and packet filtering, all of which exhibit different behavior in

the presence of faults.

We have examined and classified different kinds of errors that may occur in

a network system. One type is marked as a volatile error, i.e., errors affecting data

only temporarily. The other type is a nonvolatile error, i.e., errors affecting a static

data structure.

We have analyzed the effects of errors on network applications. Our goal is

to define data segments of these applications that can be used to measure their

error behavior. Particularly, we study several networking applications and define

error metrics for each of them. Then, we perform a study where we introduce

cache faults and measure their effect on these applications. Specifically, our

contributions in this dissertation are:

• We find a realistic model that determines the probability of a fault for a

given cycle time of a cache and show that the delay of the cache and the

28

energy consumed by the cache can be reduced significantly without incurring a

large penalty on faulty behavior,

• We classify errors in network applications depending on the extent of their

effect on applications,

• We define several data structures to measure the extent of effect of errors in

network applications,

• We simulate hardware faults and record the corresponding behavior of

different applications.

2.1. Analytical Model of Error Probability
Injection of noise into a circuit node causes a signal deviation at that node.

This signal deviation will affect the operation of the circuit or circuit block driven

by the victim net. A functional failure is possible when induced noise is propagated

and wrongly evaluated at the primary output. The parameters that determine if

there will be a logic error are (i) the amplitude and the duration of the noise pulse,

(ii) the type of the victim node and the circuit connected to the victim node, and

(iii) the signal condition on the affected node. It is important to note that with

increasing clock frequencies, a circuit node may suffer from reduced voltage swing,

since there is not enough time to fully charge or discharge the load capacitance. Cfs

in Figure 9 is the clock cycle time required to obtain the full voltage swing (Vfs)

from zero to Vdd. Note that the supply voltage is kept constant at Vdd.

29

0
0.2
0.4
0.6
0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative cylce time (Cr)

re
la

tiv
e

vo
lta

ge

sw
in

g
(V

sr
)

Figure 2.1. Voltage at a circuit node at two different frequencies

Figure 2.2. Decrease of voltage swing with increase of frequency

Figure 2.1 illustrates the decrease of voltage swing (Vs) with the decrease of

clock cycle time (C). The clock cycle time and the voltage swing are normalized

against the clock cycle at full swing (Cfs) and the full swing voltage (Vfs),

respectively. The relative voltage swing is defined as Vsr = Vs/Vfs and the relative

cycle time Cr = C/Cfs. If the voltage swing changes, all the signals become faster

by the same ratio independent of the capacitive load at a circuit node. Note that

the change of voltage swing slows down at longer clock cycle time. This shape

correctly maps the change of actual signals on-chip with time. Any signal at a

at Cfsat 0.3Cfs

30

circuit node rises quickly at the beginning and as the signal reaches close to the

full swing value it takes longer time for a certain change. The curve in Figure 2.2

has been produced by simulating a chain of gates driven by an inverter at different

frequencies with constant supply voltage Vdd.

Figure 2.3. A simple D Flip-Flop

Figure 2.4. Noise immunity curves of a D flip-flop at various voltage swings

With a reduced signal level, a circuit node is more likely to suffer from logic

failure due to a certain level of noise. Therefore, increasing frequency leads to

higher probability of logic failure at a circuit node due to reduced voltage swing.

The main advantage of static logic over dynamic logic is its robustness under the

Vfs
0.89Vfs

0.78Vfs
0.67Vfs

0.56Vfs
0.39Vfs 0.61Vfs 0.50Vfs

D ____
CLK

Q Q’

CLK

CLK

CLK

31

influence of noise. But static logic may suffer from logic failure if there is a

feedback loop. A static D flip-flop (as in Figure 2.3), which is common in registers,

has a feedback loop that cannot recover from noise-induced errors. In these types

of circuits there are three possible points where noise can be injected: the input,

the clock and the feedback loop. The feedback loop is the most sensitive to noise.

Even a small noise pulse on the feedback loop when the clock is falling or inactive

will be propagated repeatedly through the loop and may ultimately destroy the

logic information stored in the flip-flop. A set of noise immunity curves for the D

flip-flop in Figure 2.3 is presented in Figure 2.4, which plots the relative noise

duration (Dr) against the relative noise amplitude (Ar) at various voltage swings.

Noise pulses of various amplitudes and durations have been injected into the

feedback loop of a D flip-flop at different voltage swings, while keeping Vdd

constant. SPICE simulations were used to determine the set of noise amplitudes

and durations that cause a logic failure for different voltage swing levels. The area

above each curve in Figure 12 represents the amplitudes and durations of a noise

pulse that can cause logic failure. Hence, the lower the voltage swing the larger the

area of noise amplitudes and durations that can cause an error. The relative noise

amplitude is defined as Ar = A/Vfs, where A is the amplitude of the noise pulse,

and the relative duration of noise Dr = D/Cfs, where D is the duration of the noise

pulse. The highest curve is for the full voltage swing Vfs (swing from zero to Vdd).

The lower curves illustrate noise immunity at voltage swings smaller than the full

swing. It is important to note that the noise amplitudes and durations are not

32

equally probable. The probability of smaller noise amplitudes and noise durations

are higher than larger amplitude pulses with longer duration.

Figure 2.5. Noise amplitude at various switching combination of neighboring lines

of a victim line

Consider a victim line, which has n neighbors significantly coupling to it.

For noise injection into the victim line the total number of switching combinations

of the neighboring lines is 22n. Only one switching combination results in the

worst-case noise amplitude, which occurs when all the neighboring lines switch in

the same direction. However, the number of cases where the effects of most of the

neighboring lines cancel each other resulting in small amplitude of noise is large.

We have found the number of switching cases between these two limiting cases,

which result in a certain noise amplitude range. The results are plotted in Figure

2.5. This distribution can be approximated by an exponential as in (2.1).

Number of cases =
AKeK 21

−
 (2.1)

(1)

number of cases

0.05*22n

0

33

The exact constants K1 and K2 depend on the number of lines (n) coupling

to the victim line. For large n (greater than 16) this curve saturates to continuous

probability distribution of the form

rAerAP 8.28*8.28)(−=

where ∞<< rA0

(2.2)

10)(=rDP for 1.00 << rD

0)(=rDP for rD≤1.0

(2.3)

The probability distribution of noise duration can be given by (2.3). The

reason why Dr is uniformly distributed between 0 and 0.1 is that this is the range

of rise time on chip as a ratio of the cycle time. Note that the noise duration is

limited by these rise times, since noise occurs due to capacitive and/or inductive

coupling of switching line to a victim line.

Once an aggressor signal settles, the noise pulse ends. Using equation (2.2)

and (2.3), the probabilities (PE) of logic failure for a D flip-flop at different

voltage swings have been obtained by the integration of the probabilities of noise

pulse above each curve of Figure 2.6. Figure 2.6 plots the probabilities of logic

failure against the relative voltage swings (Vrs). The probability number at full

voltage swing are consistent with industrial and test data [28].

34

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

2.50E-04

3.00E-04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
relative voltage swing (Vrs)

pr
ob

ab
ili

ty
 o

f e
rr

or
 (P

E
)

1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 0.2 0.4 0.6 0.8 1
relative cycle time (Cr)

pr
ob

ab
ili

ty
 o

f e
rr

or
 (P

E)

Data

Formula

Figure 2.6. Probability of error at different cycle time

Figure 2.7. Probability of error at various voltage swings

The probability of error versus cycle time in Figure 2.7 has been obtained

by the voltage swing variable from the two relations: cycle time versus voltage

swing (Figure 2.2) and probability of error versus voltage swing (Figure 2.6). The

relative cycle time Cr is always less than 1 for lower voltage swings. Similarly we

can define relative frequency Fr = f/ffs = 1/Cr, where f is the frequency and ffs is

the frequency at full voltage swing. PE is a single bit probability of error and is a

35

function of how fast a circuit is driven by allowing the voltage swing to decrease.

The formula below shows the relation between PE and Cr and Fr.

6

2

*710*2
2*6

1

*710*2
rF

erCeEP −=−=
(2.4)

These formulae have been found by curve fitting for the data of the above

curves. The curves in Figure 2.7, showing the data and the curve fitted formula,

illustrate the accuracy of the formula. Note that if the circuit is pushed enough not

to allow any voltage swing, the error probability will be 1. However, the circuit is

never pushed to these limits. Note that, this particular fault model is applicable for

a specific circuit element, register file in current work. The other parts of the

circuit won’t follow the same fault model. However, using similar procedure, it is

possible to come up with accurate fault models for other parts of the processor. In

our earlier studies we have developed a fault model which predicts the fault

occurrence probability in the data cache [19].

The overclocking of the data cache can be implemented either statically or

dynamically. For static implementation, the clock rate would be decided at the

design time. This will be performed by setting the clock period higher than the

estimated delay. This scheme won’t require a separate clock for the register file.

Dynamic implementation, on the other hand, would adjust the clock of the system

to a higher (lower) value as the amount of error is below (above) a predetermined

36

threshold value. However, this dynamic adjustment has a high hardware overhead.

Hence, in our work we utilize a static overclocking scheme.

2.2. Sources of Errors
An important trend driving microprocessor performance has been scaling of

device sizes. Device scaling is the reduction in feature sizes and voltage levels of

basic devices on the microprocessor. Aggressive scaling results in escalated power

density and processor temperature, increasing the probability of faults [29].

Lowering the supply voltage in a microprocessor makes it more susceptible

to noise. With a reduced signal level, a circuit node is more likely to suffer from

logic failure due to a certain level of noise. Therefore, increasing frequency leads to

higher probability of logic failure at a circuit node due to reduced voltage swing. In

high frequency circuits, the analysis of errors due to logic failure has become an

important research area [30].

Another consequence of the technology scaling is the smaller supply

voltages and reduced capacitive values of the circuit nodes. This has raised

reliability concerns due to the increased susceptibility to soft errors. Soft errors or

transient errors are circuit errors caused by excess charge carriers induced

primarily by external radiations, such as alpha particles and high energy neutrons

[31-33]. While these errors cause an upset event, the circuit itself is not damaged.

In different memory designs, these errors can cause a particular node to charge or

37

discharge and thus cause a bit flip. This is particularly true for SRAM cells used in

caches.

Although designers aim to prevent all hardware faults while designing a

system, faults can still occur due to external factors. Hence, fault tolerance has

traditionally been an essential field of study and is becoming even more important

for high-performance processors.

2.3. Error Classification
There are different types of error that may occur in a network system and

their effects on the applications vary. An error can be classified as a volatile error

if it affects the application in a local manner, e.g., an incorrectly received network

packet or corruption of a temporary value. In general, these types of errors are

likely to affect a limited amount of data and will not noticeably affect performance

and/or application output provided that the error does not continually reoccur.

While processing a networking application, we can pay less attention to volatile

errors whose occurrence is limited to very few packets.

The other type of error is the nonvolatile errors, which affect the

application more seriously. Such errors generally result due to the changes of static

data structures, e.g., the routing table used in a NAT application. This type of

error will have a permanent effect on the system. Since the data structures that

are generated in the control plane are used for the processing of each packet, a

fault during the execution of the control plane tasks may corrupt many

38

calculations over time before it is corrected. Hence, the effect of nonvolatile errors

is likely to be more severe and measures should be taken to detect and prevent

them.

It must be noted that the user makes an assumption about the completion

of the application even if the fault probability is high. In reality, on the other

hand, execution of an erroneous code diminishes the guarantee of completion. As

the code may read erroneous data, it may turn into an infinite loop or may try to

get access to some non-existent data during execution. Such events would cause

the system to crash. This is a possible outcome for each of the applications we are

investigating and is of interest to us for measuring the effects of faults. We classify

such an error, which prevents the program from continuing its execution, as a fatal

error. In case of a fatal error, the integrity of the systems is disrupted. Hence, we

give special importance to fatal errors. In Section 2.7.3, we record the probability

of a fatal error for different fault rates in the applications and report them

separately.

2.4. Applications and Error Metrics
In this section, we discuss the networking applications studied in this

project and present the data structures used to measure application errors for each

benchmark program. We selected seven applications from the NetBench [27] suite.

The applications are listed in Table 1. NetBench is a benchmarking suite designed

for NPs. It contains applications representing level 3 tasks (e.g. route) as well as

higher-level programs (e.g. MD5).

39

For each network application, important data structures and output of key

function units are identified. Our goal is to make a comparison of these data values

between the correct execution and a faulty execution. Using simulation results, we

can calculate the statistical probability of an error to happen in the application.

We can notice that a part of these data structures has more impact on the overall

output than others (e.g. a routing table error is more important than an error in

the ttl value calculation).

In this analysis, we simply list the structures that are important in the

execution. These structures help us to scan the state of the application while it is

executing. We have marked the Error Keys. We measure the effect of cache faults

on these structures as discussed in Section 2.7.1.

In the following, we list the selected application followed by the application-

level error metric used to measure the effects of faults.

CRC: The CRC-32 checksum calculates a checksum based on a cyclic

redundancy check as described in ISO 3309 [34]. CRC-32 is used in Ethernet and

ATM Adaptation Layer 5 (AAL-5) checksum calculation. The code is available in

the public domain [35]. The errors are measured using two data structures: the crc

table and the crc accumulator value calculated for each packet. Note that the

errors in the crc table are more important as they would affect multiple packets

during the processing. Any error on the accumulator calculation part would

concern only one packet.

40

TL: TL is the table lookup routine common to all routing processes. We

have used radix-tree routing table, which was used in several UNIX systems. The

code segment is from the FreeBSD operating system [36]. The error metrics in the

TL application are: the radix tree nodes traversed and the RouteTable entry for

each packet.

Table 2-A. NetBench Applications and Their Properties

Application Arguments
No. of inst.
simulated

[M]

No. of
cache
access
[M]

CRC 5000 145.8 59.8
TL 128 5000 6.9 3.9

ROUTE 128 5000 14.2 7.1
DRR 128 5000 12.9 7.9
NAT 128 5000 11.4 5.6

MD5 5000 209.1 73.2

URL small_inputs 5000 497.0 249.1

ROUTE: IPv4 routing according to RFC 1812 [37] is implemented in the

Route application. When a packet arrives in a router its next network hop is

decided by the router. Route implements the table lookup along with internet

checksum (for the header). During processing, there are changes in the header (for

example, the Time-To-Live value). It may fragment the packet and forward it.

The code is also from the FreeBSD operating system [36]. The values observed in

the ROUTE application are: the entries in the created RouteTable, the checksum

value, the ttl value, and the radix tree entries traversed for each packet.

DRR: Deficit-round robin (DRR) scheduling [38] is a scheduling method

implemented in modern network switches. In DRR, all the connections through the

41

router have separate queues. Using these queues, the router tries to accomplish a

fair scheduling by allowing the same amount of data to be passed from each queue.

The implementation is based on the algorithm by Shreedhar and Varghese [38].

The data values in the DRR application are: the entries in the created

RouteTable, the radix tree entries traversed for each packet, the value of the

deficit list for each packet, and the deficit information read for the packet.

NAT: Network Address Translation (NAT) is a common method for IP

address management. NAT operates on a router, usually connecting two networks,

and translates the private (not globally unique) addresses in the internal network

into legal addresses before packets are forwarded onto the public network. Hence,

for any departing packet, the source IP on the packet should be changed.

Similarly, the destination address on any incoming packet should also be modified.

The program accomplishing this task is using several routines from the FreeBSD

operating system [36]. The data values used for measuring errors in NAT are:

initial IP source address, value in the interface for translation, translated IP source

address, the IP destination address after translation, the entries in the NAT table,

and the radix tree entries traversed for each packet.

MD5: Message Digest algorithm (MD5) creates a signature for each

outgoing packet, which is checked at the destination [39]. The signature is

cryptographically secure, hence if the received packet does not match the

signature, then the receiver will assume that the packet is unreliable and discard

it. The implementation is from RSA Data Security, Inc. [40]. The errors in MD5

42

are binary errors. So they are easily detectable. In other words, if the output string

of the erroneous execution does not exactly match the correct execution, the

packet is said to be processed incorrectly. We then measure the fraction of packets

incorrectly processed.

URL: URL implements URL-based destination switching, which is a

commonly used content-based load balancing mechanism. In URL-based switching,

all the incoming packets to a switch are parsed and forwarded according to URL.

For example, all image requests might be sent to an image server. This application

increases the utility of specialized servers in a server farm. The implementation is

based on the description from PMC-Sierra [41]. The data structures in the URL

application that are observed are: URL table entries, final IP destination address,

RouteTable entries, the checksum value, the ttl value, and the radix tree entries

traversed for each packet.

2.5. Error Injection and Measurement
We introduced faults in the applications by simulating random faults in the

data cache. Erroneous values are inserted randomly in the register files and

propagated during the execution of the applications. At the same time, the

proposed error metrics for each of the applications are scanned. Every mismatch of

the values between the correct simulation and the erroneous simulation is counted

as an application error for the corresponding application metric. We observe some

error metrics reacting more sensitively to hardware faults than others. As discussed

in Section 4.3, the error metrics could be classified as volatile and non-volatile

43

errors. For example, any error in the RouteTable entries is permanent and affects

the system severely. On the other hand, an error in the ttl value of a packet

during routing is limited to the corresponding packet, hence is a volatile error.

We assume a processor architecture similar to a generic Network Processor

(NP). We model a relatively simple execution core with a local instruction cache, a

local data cache, and a shared cache that corresponds to a level 2 cache as

described in Section 2.6. Although we apply our ideas to a packet processor, they

can be applied to any type of processor that executes applications with fault

tolerance (e.g. media processors). Therefore, we selected more generic

programmable processor architecture.

One important aspect of the cache accesses is whether to include a fault

detection scheme or not. In this work, we have assumed an architecture where no

fault detection scheme (e.g., parity) is employed. In addition, we assume that the

data in the level 2 cache (or the next level of memory hierarchy) will always be

correct if it is not written back from the first level cache. So, if a fault is detected,

we can access the data from the level 2 cache. Therefore, error correction

techniques (such as Hamming codes) would incur unnecessary complication on the

design and energy consumption and hence are not considered in our studies.

2.5.1 Fallibility Factor

We need to introduce a measurement index to analyze the effect of

hardware errors on the networking applications. Since the processor is going to

44

make errors, traditional approaches such as delay, energy, or energy-delay product

would be insufficient. We define the metric fallibility as the probability of the

processor making an error for the application. One can use the number of

hardware faults that are not detected to measure the fallibility. However, due to

the application-specific nature of our target architectures, we use application errors

in the fallibility factor as discussed in Section 2.5.1. Particularly, fallibility

corresponds to the fraction of packets that have any type of errors. Note that even

if the packet is correctly forwarded, it can still contribute to the fallibility rate.

For example, if the ttl value of the packet is different than what it would be in

case of correct execution, we consider the packet to have an error.

2.5.2 Fatal Error Probability

We pay special attention to fatal errors. Since fatal errors prevent other

packets from being processed1, we calculate the number of packets successfully

processed until the occurrence of a fatal error. The reported fallibility factors are

based on this number. We also report the probability of a fatal error in addition to

the fallibility factor. Particularly, we record the probability of a fatal error with

increasing error introduction rate. Increased hardware errors make the system

more susceptible to termination. As a result fewer packets can be processed

successfully at higher error introduction rate.

1 Majority the fatal errors we have observed during our simulations are caused by the execution getting into an infinite loop.

45

The cause of the fatal errors can be attributed to several factors and we can

classify the errors accordingly. A fatal error may occur due to an unimplemented

system call or an access to restricted or non-existent memory location. The system

crashes if one of these fatal errors occurs. However, the system may run into an

infinite loop because of an error. We classify this fatal error as the “silent error”.

We propose different remedies for the fatal errors depending on their

nature. The destructive errors can be taken care of by higher levels of the system

(e.g. operating system) that reset the system to a stable state to prevent a system

crash. However, to prevent the “silent error”, we can implement the check-pointing

scheme to prevent the system from running into an infinite loop.

2.6. Simulation Environment
We use the SimpleScalar/ARM [42] for our simulations. We modified the

input set to model a processor similar to execution cores in a variety of Network

Processor architectures. Particularly, we simulate a processor similar to

StrongARM 110 with 4 KB, direct-mapped L1 data and instruction caches with

32-byte line-size, and a 128 KB, 4-way set-associative unified L2 cache with a 128-

byte line-size. We modified the applications to output the values of data structures

mentioned in the previous section. As discussed in 2.4, the data metrics can be

divided into two major categories. Some of them record the control structure of

the application and the rest describe the packet processing tasks of the networking

applications. All the applications dump the corresponding data metrics into a file

that is processed later to calculate the application errors. Since there is always a

46

probability of early termination due to fatal errors, we also record the total

number of packets processed in each simulation.

The simulator is modified to introduce random errors into the execution

and to simulate the effects of the introduced errors. The architecture has been

designed to propagate the introduced errors in subsequent stages. However, we

must remember that it is the inherent nature of the applications, which enables

them to limit the effect of the volatile errors within a particular packet. We chose

an initial error probability of 12*10-8 per bit, as reported by Shivakumar et al. [30].

The error rate is calculated for each bit accessed independently. Therefore, we do

not simulate the effect of relation between errors. Then, we increase the error rate

in steps until it is set to 819.2*10-8.

2.7. Simulation Results

2.7.1 Application Error Measurement

This section describes the simulation results observed for selected NetBench

applications. For different error rates, effects on the data structure of each

application discussed in Section 2.4 are recorded. Figure 2.8 to Figure 2.14 describe

the behavior of seven selected network applications for different error introduction

rate. Figure 2.8 presents the results for the ROUTE application. Intuitively, the

faults in the static data structures (volatile error) should have significantly more

impact on the application behavior. This can be observed for initialization error.

However, for most error types, the difference is not drastic. This behavior is due to

the shorter length of the static data structure initialization and modification of the

47

application. In most of them, we spend less time in the control structures. For

networking applications, majority of time is spent on processing the packets.

Therefore, although each fault happening during initialization has larger impact on

the error rate compared to the faults during packet processing tasks, the overall

impact of errors during the static data structure tasks is not drastically more on

the application errors. This is an encouraging result, because in many cases the

processor will not have information about the type of task it is executing. Since

the effects of control plane tasks are relatively smaller, the overall impact of errors

can be kept minimal.

Figure 2.11 presents the results for the NAT application. Similar trends can

be observed for this application as well. Particularly for the NAT application, we

see that errors due to faults during packet processing tasks have more impact on

the application behavior than the faults during static data structure tasks. This

can be attributed to the fact that the NAT application does a lot of processing

over each packet. As a result, the probability of an error during data processing

tasks increases.

The results for the remainder of the applications are not discussed in detail

due to their similarities with the presented results. However, all of them show

similar characteristics of the applications under erroneous execution. In general,

most applications can easily tolerate a small probability of error.

48

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e Initialization Error

Checksum Value
TTL Value

RouteTable Entry
Fatal Error

Figure 2.8. Error Generation probability for Route application

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e

Initialization Error

Deficit List Entry
Deficit Information

Radix Tree Entry
Route Table Entry

Fatal Error

Figure 2.9. Error Generation probability for DRR application

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e

Initialization Error

Radix Tree Entry

Route Table Entry

Fatal Error

Figure 2.10. Error Generation probability for TL application

49

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e

Initialization Error

Interface Value

Destn Add

Radix Tree Entry

Translated IP Address

Fatal Error

Figure 2.11. Error Generation probability for NAT application

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

E
rr

or
 R

at
e Initialization Error

Encrytion Key

Fatal Error

Figure 2.12. Error Generation probability for MD5 application

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8

Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e

CRC Table Initialization

Accumulator Value

Fatal Error

Figure 2.13. Error Generation probability for CRC application

50

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

12.8 * 10-8 51.2 * 10-8 204.8 * 10-8 819.2 * 10-8
Fault Introduction Probability

A
pp

lic
at

io
n

Er
ro

r R
at

e

URL Table Entry

Route Table Entry

Final Destination Address

Radix Tree Entry

Fatal Error

Figure 2.14. Error Generation probability for URL application

With the increase in error introduction rates, the applications start

producing erroneous outputs. This is expected as increased hardware errors will

definitely perturb the system integrity. The extent of application errors depends on

the nature of the application and the error metric being observed. Some of the

application metrics (e.g. ROUTE table entry) are affected easily, although being

volatile errors, the effect of the erroneous behavior is limited to a single packet.

We see that the fault introduction rate in the data cache can be increased up to 4

times without causing a major impact on the application output. During the

simulations, we have seen that not all the faults have an impact on the application

output. On average we have only observed an error for approximately 15% of the

faults.

2.7.2 Fallibility Factor

In almost all the applications, we see that increasing the error introduction

rate increases the fallibility factor. For lower fault introduction rate, the fallibility

51

factor suggests that the applications are not affected by the hardware faults.

However, with increase in the error introduction probability, the integrity of the

system becomes imbalanced which is properly reflected in the fallibility factor

values. We recorded the probability of different application errors for each of the

seven NetBench applications. The fallibility factor is obtained by adding 1 with

the sum of all application error probabilities for each application.

Table 2-B. Fallibility Factor of Different Applications

Fallibility Factor
Appln.

12.8*10-8 51.2*10-8 204.8*10-8 819.2*10-8

CRC 1.0023 1.0038 1.0073 1.0524

Tl 1.0010 1.0063 1.0159 1.1350

ROUTE 1.0003 1.0008 1.0013 1.0175
DRR 1.0000 1.0010 1.0023 1.0076
NAT 1.0003 1.0020 1.0035 1.0770

MD5 1.0000 1.0115 1.0552 1.2610

URL 1.0003 1.0013 1.0025 1.0177

Table 2-B gives us a common framework to compare the behavior of the

network applications subjected under hardware errors. The MD5 application shows

maximum sensitivity towards errors. It has a fallibility factor of 1.261 when the

error introduction rate is highest (819.2*10-8). This rate means that on average in

26.1% of the packets an error key differs from the execution without any faults.

2.7.3 Fatal Error Probability

Each application can sustain the effect of the introduced error to varying

extent. For smaller error rates we observed the execution of the application

without any observable error in the data structures and the application output.

52

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

route drr nat tl url md5 crc avrg
Applications

Pr
ob

ab
ili

ty

12.8*10-8
50.2*10-8
204.8*10-8
819.2*10-8

With increase in the error introduction rate, the applications started to produce

erroneous outputs and data structure values. For larger error rates, the overall

data integrity of the system was lost and the applications crashed. This is

indicated by the fatal error probability. Figure 2.15 shows the probability of fatal

errors at different error introduction probabilities. The figure suggests that we

should never allow the system to work in an environment with high error

introduction probability. This would cause a fatal error. A network system with

errors in few packets is acceptable. However, an unstable system is certainly not

desirable.

Figure 2.15. Fatal Error probability for different applications

2.8. Related Work
High transient-error tolerant system design has traditionally been

considered in the context of systems that operate in high-radiation environments

or in outer space, where there is a heavy concentration of alpha-particles and

53

atmospheric neutrons [43]. Recent IBM Research showed that computer systems

are susceptible to transient faults induced by these particles [25]. In the circuit

verification area, there has been a strong emphasis on reliability which is an

important problem in IC fabrication. Earlier researches have studied potential

errors in the pre-silicon [44] stage. Additionally errors subsequent to the

fabrication process [45] have been analysed. High transient fault resilient computer

systems design [46] has gained greater significance due to the combined effect of

higher integration densities, lower voltages, and faster clock frequencies.

Fault injection is an attractive method for validation for estimating the

dependability of computer systems [47]. Studies have already shown that the

workload has a significant effect on the dependability measures [48, 49]. However,

in our case we have investigated the application-level behavior of networking

programs under hardware faults.

54

CHAPTER 3

RELIABILITY-PERFORMANCE TRADEOFF ANALYSIS

 Architectural optimization based on application specific characteristics is

one of the emerging trends in high performance computing. Traditionally,

computer architects utilize application characteristics to explore higher levels of

Instruction Level Optimization (ILP). They systematically evaluate application

performance improvements associated with architectural enhancements that

embodies acceptable cost/performance tradeoffs while reducing stalls in the

microarchitecture. In this chapter, we have utilized novel system attributes to

enhance system performance in modern microprocessor system.

First we will discuss how we can tradeoff reliability to gain in terms of

performance in a computing system. With technology scaling, variability in

transistor performance is increasing continually making them more prone to fault.

On the other hand, Moore’s law will enable us to billions of transistor in a single

die. Figure 3.1 [50] depicts the trend starting from 2001 with 130nm technology

generation, with a 300mm2 die capable of integrating one billion transistors. The

curve shows by 2015 we will have 100B transistors on a 300mm2 die, with almost

1.5B transistors available for logic. The logic transistors tend to be larger than

55

transistors in the memory, take larger space, and consume more power. With an

abundance of transistors that may not work reliably all the time, it is possible to

design a reliable architecture with unreliable circuit elements. This kind of

optimization would be most useful more application domains such as networking,

media processing where an inherent robustness is present in the system.

Figure 3.1. Transistor Integration Capacity

For networking application domain, we have observed a large amount of

modularity in applications. With the emerging trend of using multiple cores in

network processing systems, task allocation is an important bottleneck for

performance optimization. We propose an intelligent task allocation scheme that

utilizes modularity in networking application and statistical information about

module processing. Overall, this chapter summarizes how holistic architecture

framework can improve system performance using the following system attributes:

• Inherent system robustness

• Variability in application module processing

56

A. CLUMSY PROCESSING IN PACKET PROCESSORS

Hardware faults can occur in any computer system. Although faults cannot

be tolerated for most systems (e.g., servers or desktop processors), many

applications (e.g., networking applications) provide robustness in software.

However, processors do not utilize this resiliency, i.e., regardless of the application

at hand, a processor is expected to operate completely fault-free. In this chapter,

we question this traditional approach of complete correctness and investigate

possible performance and energy optimizations when this correctness constraint is

released. We first develop a realistic model that estimates the change in the fault

rates according to the clock frequency of the cache. Then, we present a scheme

that dynamically adjusts the clock frequency of the data caches to achieve the

desired optimization goal, e.g., reduced energy or reduced access latency. Finally,

we present simulation results investigating the optimal operation frequency of the

data caches, where reliability is compromised in exchange of reduced energy and

increased performance.

3.1. Introduction

Over the last decade, in spite of the complexities of new manufacturing

technologies and increasingly complicated architectures, designers have been able

to steadily push the limits of performance of microprocessors. This is achieved

through optimizations at the architectural level (such as aggressive pipelining

strategies) and at the circuit level (such as smaller feature sizes). As we move into

57

deeper sub-micron technologies, the complexity of pushing the circuit performance

has become an important obstacle. Increased heat dissipation and sub-micron

effects are two examples of the limitations on the optimizations at the circuit level.

In this work, we design a micro-architectural optimization to aid the circuit

designers to overcome such hurdles. Particularly, we will allow the clock frequency

of the data cache to go beyond the specifications of the circuit designer. Instead of

performing this “over-clocking” uninformed, we will first explore the relation

between the operating frequency (i.e., clock frequency) of a cache structure and its

robustness. As we increase the clock frequency, the probability of a fault in the

data cache accesses increases. This may result an erroneous execution of the

applications. Hence, we name our proposed architecture a clumsy packet processor.

In our approach, we first develop a model for estimating the hardware faults when

the clock frequency is changed. This model will allow us to develop ultra-low

power cache structures. In addition, the delay of the components will also be

reduced. The disadvantage of this optimization is that the probability of hardware

failure reduces the reliability of the processor. Overall, our goal is to investigate

the trade-offs at the application-level, architecture-level, and circuits

simultaneously in the context of packet processors. We use the term packet

processor for any type of processor handling packets in a networking hardware.

These range from network processors (NPs) to ASICs and general-purpose

microprocessors used in networking hardware.

58

In all computer processors there is an inherent possibility of faults2 being

introduced into the system. These faults may arise from any of several sources

such as adverse environmental conditions [51], physical hardware defects,

electronic noise or logical design flaws [52]. Moreover, this fault problem is

expected to be even more pressing in the future due to aggressive scaling-down of

the supply voltages (Vdd), increasing clock rates, and the use of flip-chip

packaging. While it is critical to put every effort to avoid these faults by careful

circuit design and packaging, they can still occur and need to be addressed. Hence,

we should consider reliability trade-offs even during the design of the processors,

which will operate completely under the specified conditions.

The effect a fault has on a system is largely dependent on the application in

question. In most cases, omitting faults is not an option, i.e., the processor should

be designed to capture and eliminate faults. This is the inherent nature of the user

expectation. However, for other domains—such as networking and media

applications—a certain level of error is acceptable, and the integrity of the

system’s behavior can be maintained despite potential faults. This is also related to

the properties of the systems: networking software/systems are implemented with

the assumption that the hardware can fail (e.g., ROUTErs can drop packets).

Regardless of a fault’s source, the system will operate differently depending

on the corrupted data. Electronic noise may lead to the corruption of a single piece

2 A fault is an incorrect execution of the hardware. An error is defined to be an incorrect outcome of an application due to a
fault.

59

of transient data and affect behavior only momentarily. On the other hand, a

static data element might be damaged—such as a lookup table—disrupting the

system for a longer period of time and perhaps making recovery from the error

more difficult. In this research, we analyze the susceptibility of a data cache to

faults and the resulting behavior for packet processors. Particularly, we study

several networking applications and define error metrics for each of these

applications. We first make the distinction between the control plane and data

plane tasks in these applications and measure the error behavior of the

applications under different operation frequencies in these segments. Then, we

perform a study where we introduce cache faults and measure their effect on these

applications. Our goal is to extract optimal execution properties of the caches for

different applications. We also present a scheme that dynamically adjusts the

processor properties to achieve reduced energy consumption and/or increased

performance. Specifically, our contributions in this chapter are:

• We propose the design and utilization of clumsy packet processors,

• We discuss simulation results investigating an optimal point for trading off

the reliability for reducing cycle time of the data cache in a representative

architecture,

• We implement a scheme to dynamically adjust the operation frequency of

the data cache to achieve the desired objective (e.g., reduced energy).

60

There is also an increasing motivation to utilize NPs in wireless systems. In

such systems, energy consumption is arguably the most important design criteria.

Our optimization scheme reduces the execution delay and the energy consumption

simultaneously.

The types of errors examined are similar to those in previous chapter

(Section 2.3 and 2.4). One type is considered to be a volatile error, affecting data

only temporarily. In general this type of error will only concern a limited amount

of data, and will not noticeably affect performance provided that the error does

not continually reoccur. The other type is a nonvolatile error, which has an effect

on a static data structure (e.g., the routing table). This type of error will have a

lasting effect on the system. Our goal in this chapter is to define data structures in

these applications that can be used to measure their error behavior.

3.2. Applications and Error Measurement

In this section, we discuss the networking applications studied in this

project and present the error metrics used for each application. We selected seven

applications from the NetBench [27] suite. The applications are listed in Table

Table 2-A. NetBench is a benchmarking suite designed for NPs. It contains

applications representing level 3 tasks (e.g., ROUTE) as well as higher-level

programs.

As a metric of “reliability”, we first identify important data structures and

outputs of key function units for each application. Our goal is to make a

61

comparison of these data values between the correct execution and an execution

with faults (Section 3.3). Thereby, we will measure the probability of an error in

the application. Some of these data structures have more impact on the overall

output than others (e.g., a routing table error is more important than an error in

the ttl value calculation). However, in this study we do not assign weights to

them. Note that this type of measurement assumes that the application executes

to completion even under faults. However, we are executing erroneous code (i.e., a

code that will read erroneous data). As the data values are changed, it is possible

that the application might fall into an infinite loop or even cause the system to

crash. This is of interest to us for measuring the effects of faults. Therefore, an

error, which prevents a complete execution is a special one called a fatal error.

3.3. Clock Variation and Fault Detection
We assume a processor architecture similar to a generic Network Processor

(NP). We model a relatively simple execution core with a local instruction cache, a

local data cache, and a shared level-2 cache. Although we apply our ideas to a

packet processor, they can be applied to any type of processor that executes

applications with fault resiliency (e.g., media processors).

One important aspect of the cache accesses is whether to include a fault

detection scheme or not. If we don’t provide the processor with an error detection

and correction scheme, there is a possibility of the system to crash because of the

occurrence of a fatal error. Moreover, as we are trading off reliability for

performance and power of the system, it is a good idea to detect and correct faults

62

for the system to perform without any noticeable problem. There is a large space

of possible implementations for error correction. Our framework can utilize any of

these techniques. However, these techniques (such as Reed-Solomon or Hamming

codes [53]) are usually computationally complex. Hence they would incur a

performance overhead. Moreover, it could add extra cost due to additional

hardware logic. We used simple parity checking to detect faults in a cache block.

Upon detection, we have defined simple, cost-effective error correction schemes as

discussed in the following sections.

In Section 3.4, we will experiment with a processor architecture where cache

blocks are protected with parity and a processor architecture without any fault

detection scheme. We are modifying the clock frequency of the level-1 cache only.

Hence, we assume that the data in the level-2 cache will be correct unless an

incorrect value from level-1 is written to it. Therefore, if a fault is detected, we can

access the data from the level 2 cache. As the error correction techniques (such as

Hamming codes) would incur unnecessary complication on the design and energy

consumption, they are not considered in our studies.

Once a fault is detected, we have different options of recovery. A fault

might be caused during the read in which case the actual data in the cache is

actually correct or during the write to the cache. We cannot determine the exact

source of the fault. The first technique we utilize assumes that every fault observed

63

is a write fault. Therefore, for every fault detected, it invalidates the cache block3

and starts accessing the level 2 cache. This strategy is called a one-strike

strategy. The second strategy accesses the cache after a fault and if another fault

is detected, it invalidates the cache block and accesses the level 2 cache. This

strategy is called a two-strike strategy. Similarly, a three-strike strategy

accesses the level 1 cache twice before invalidating the block. Even if the processor

employs a fault detection mechanism, there is still a chance of faults. Therefore,

the application can behave erroneously.

Over-clocking the cache can be utilized during the design process of a

processor. However, this is hard to achieve for programmable processors (such as

Network Processors), because different applications might require different levels of

reliability. Therefore, in the next section we also present results for a dynamic

frequency adaptation technique. In this scheme, the processor adapts the

operation frequency of the data cache according to the faults it has observed.

Particularly, it records the number of parity failures during execution epochs. For

our simulations, after the completion of the processing of 100 packets, the

processor makes a decision for whether to increase the frequency, to keep it in its

current state, or to decrease it depending on the number of faults. Note that the

possible frequency settings are discrete. Hence, when the frequency is changed, it

will be set to the next frequency level available. Whenever a frequency change is

3 If the cache has sub-blocks, only the corresponding portions of the cache block can be invalidated and accessed from the
level 2 cache. However, in this research we do not study such cache structures.

64

made, the number of faults in the previous epoch is stored. During the decision, if

the number of faults is more than X1% of the last stored fault rate, the frequency

is reduced. If the fault rate is less than X2% of the last stored rate, the frequency is

increased. For all other rates, the frequency is not changed. A detailed study

reveals that setting X1 to 200% and X2 to 80% overall results in the best

performance of the dynamic scheme. This also relates to the fault model we have

developed in Section 5. As shown in Figure 5, the clock cycle can be reduced by

almost 60% before we observe a major increase in the number of faults. Depending

on the packet processing time, the X1 and X2 values will lean towards increasing

the frequency until a significant increase in the number of faults.

Most networking applications have application errors proportional to the

number of faults occurred during the processing of a packet. The dynamic

frequency adaptation technique observes the packet processing and makes the

decisions for a constant number of packets (instead of time). This allows the

system to dynamically adjust to the properties of the application. This information

is usually available to the cores.

3.3.1 Implementation of the Cache Overclocking Architecture

Overclocking is applied to the L-1 data cache only, so we need to

synchronize the cache with the rest of the core. For static over-clocking, this is

straightforward. If the original data cache latency is 2 processor cycles and the

cache is over-clocked by 50% or more, the cache latency will always be 1 processor

cycle and the processor will be designed accordingly. In addition, in the static case,

65

we do not even need a separate clock signal to the data cache. The clock input of

the cache can be multiplied to 2 clock cycles from a single one.

The incorporation of the dynamic overclocking is more complicated. In this

case, we need a separate clock signal to the cache, and more importantly, we need

to be able to adjust between a pipeline with 2-cycle cache latency and 1-cycle

cache latency. Note that, we don’t change the frequency of the data cache

frequently. At the completion of processing for every hundredth packet, a decision

is taken about the changing the cache clock frequency. In addition, note that

dynamically varying the clock frequency of the cache is easier to implement than

varying the supply voltage [54]. This can be achieved while the cache is being

accessed and there is no need to flush the cache. In accordance with this, we incur

a 10-cycle penalty whenever the frequency is dynamically varied. In addition, the

hardware to implement variable clock rate is also quite simple. We assumed that

the frequency can be increased by 50%, 100%, or 300%, corresponding to Cr values

of 0.75, 0.5, and 0.25.

3.3.2 Error Injection and Measurement

We introduced faults in the applications by simulating random faults in the

data cache. Erroneous values are inserted randomly in the cache accesses and

propagated during the execution of the applications. At the same time, the

proposed error metrics for each of the applications are scanned. Every mismatch of

the values between the correct simulation and the erroneous simulation is counted

as an application error for the corresponding application metric. We observe some

66

error metrics reacting more sensitively to hardware faults than others. As discussed

in Section 3, the error metrics could be classified as volatile and non-volatile errors.

For example, any error in the RouteTable entries is permanent and affects the

system severely. On the other hand, an error in the ttl value of a packet during

routing is limited to the corresponding packet, hence is a volatile error. However,

we do not make such a distinction in our simulations: regardless of the source of

an application error, we simply observe the output and capture the change in the

application output. These changes may be caused by volatile errors or nonvolatile

errors. From our perspective, we are only interested in measuring the change in

the application output for a given hardware fault rate and this is independent of

the sources of the errors.

3.3.3 Fallibility Factor

We need to introduce a measurement index to analyze the effect of

hardware faults on the networking applications. Since the processor is going to

make errors, traditional approaches such as delay, energy, or energy-delay product

would be insufficient. We define the metric fallibility as the probability of the

processor making an error for the application. One can use the number of

hardware faults that are not detected to measure the fallibility. However, due to

the application-specific nature of our target architectures, we use application errors

in the fallibility factor as discussed in Section 4. Particularly, fallibility corresponds

to the fraction of packets that have any type of errors. Note that even if the

packet is correctly forwarded, it can still contribute to the fallibility rate. For

67

example, if the ttl value of the packet is different than what it would be in case of

correct execution, we consider the packet to have an error.

3.3.4 Fatal Error Probability

We pay special attention to fatal errors. Since fatal errors prevent other

packets from being processed4, we calculate the number of packets successfully

processed until the occurrence of a fatal error. The reported fallibility factors are

based on this number. We also report the probability of a fatal error in addition to

the fallibility factor. Particularly, we record the probability of a fatal error with

increasing error introduction rate. Increased hardware faults make the system more

susceptible to termination. As a result fewer packets can be processed successfully

at higher error introduction rate.

The cause of the fatal errors can be attributed to several factors and we can

classify the errors accordingly. A fatal error may occur due to an unimplemented

system call or an access to restricted or non-existent memory location. The system

crashes if one of these fatal errors occurs. However, the system may run into an

infinite loop because of an error. We classify this fatal error as the “silent error”.

We propose different remedies for the fatal errors depending on their

nature. The destructive errors can be taken care of by higher levels of the system

(e.g. operating system) that reset the system to a stable state to prevent a system

4 Majority the fatal errors we have observed during our simulations are caused by the execution getting into an infinite loop.

68

crash. However, to prevent the “silent error”, we can implement the check-pointing

scheme to prevent the system from running into an infinite loop.

3.3.5 Comparison Metric

We need to introduce a measurement index to determine the “optimal”

point of operation. Since, the processor is going to make errors, traditional

approaches such as delay, energy, or energy-delay product would be insufficient.

We define the metric energy-delay-fallibility product, which is the product of the

energy consumption, the execution cycles of the application, and the “fallibility”

factor of the processor. The energy consumption is the energy consumed in the

whole processor during the execution of the application. Particularly, fallibility

corresponds to the fraction of packets that have any type of errors. We also pay

special attention to the fatal errors. Since fatal errors prevent other packets to be

processed5, we calculate the number of packets successfully processed till the

occurrence of a fatal error. The reported energy-delay-fallibility factors are based

on this number. We also report the probability of a fatal error in addition to the

energy-delay-fallibility product. Particularly, we record the probability of a fatal

error with increasing clock frequency. Increased clock frequency makes system

more susceptible to termination. As a result less number of packets can be

processed successfully at higher clock frequency.

5 Majority the fatal errors we have observed during our simulations are because the execution gets stuck in an infinite loop.
For such an error, the processor can be modified such that we can recover from the error.

69

Although we argue that the packet processors can have faults, frequent

faults are certainly undesirable considering the system behavior. Therefore, instead

of giving the same weight to each component in energy-delay-fallibility product,

one can give more weight to the fallibility. Particularly, the product can be

calculated as energyk-delaym-fallibilityn according to the needs of the architecture.

In our studies, since delay and fallibility are more important than energy, we set k

to 1, m to 2, and n to 2. The energy-delay-fallibility product can be defined for a

single component (e.g., cache). However, in this work, we measure the metric for

the applications.

3.4. Experimental Results

3.4.1 Simulation Environment

We use the SimpleScalar/ARM [42] for our simulations. We modified the

processor configuration to model a processor similar to execution cores in a variety

of Network Processor architectures. Particularly, we simulate a processor similar to

StrongARM 110 with 4 KB, direct-mapped L1 data and instruction caches with

32-byte line- size, and a 128 KB, 4-way set-associative unified L2 cache with a 128-

byte line-size. The level 1 data cache has 2-cycle latency and the level 2 cache

latency is 15 cycles. We first modified the applications to mark the values of data

structures mentioned in the previous chapter. Then, we have modified the

simulator to introduce random faults into the execution and to simulate the effects

of the introduced faults. We chose an initial fault probability of 2.59*10-7 per bit

(in accordance with the formula (2.4)). This fault rate is similar to the rates

70

reported by Shivakumar et al. [55]. The probability of a two-bit fault is set to

2.59*10-9, and the probability of three-bit faults is 2.59*10-10 in accordance with

reported correlation between single-bit and multiple bit faults [56]. For the higher

clock rates, we increase the fault rate in steps according to formula (Section 2.4).

3.4.2 Application Error Behavior

This section describes the simulation results observed for the networking

applications. The experiments in this section measure the effect of different fault

rates on the data structures discussed in Section 2.4.

Figure 3.2 presents the results for the ROUTE application. For the results

presented in Figure 3.2(a), we only introduce faults during the control plane tasks.

Similarly, for the results in Figure 3.2(b), faults are introduced only during data

plane tasks. For the results in Figure 3.2(c), faults are introduced during both the

control plane and data plane tasks. Intuitively, the faults in the control plane tasks

should have significantly more effect on the application behavior. This can be

observed for initialization error when Figure 3.2(a) and Figure 3.2(b) are

compared. However, for most error types, the difference is not drastic. This

behavior is due to the shorter length of the control plane tasks compared to that of

the data plane tasks. Therefore, although each fault happening during the control

plane tasks has larger impact on the error rate compared to the faults during data

plane tasks, the overall impact of varying the clock rate during the control plane

tasks is not drastically more on the application errors. This is an encouraging

result, because in many cases the processor will not have information about the

71

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

100% 75% 50% 25%
Relative Clock Cycle

Er
ro

r P
ro

ba
bi

lit
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

type of task it is executing. Hence, it might be complicated to have different clock

rates for different tasks. Since the results indicate that the effect of faults during

control plane tasks is tolerable, we can “safely” vary the clock frequency.

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

100% 75% 50% 25%
Relative Clock Cycle

Er
ro

r P
ro

ba
bi

lit
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

100% 75% 50% 25%
Relative Clock Cycle

Er
ro

r P
ro

ba
bi

lit
y

Initialization Error

Checksum Value

TTL Value

RouteTable Entry

Fatal Error

Figure 3.2. Error Probability of ROUTE application

(b) Faults introduced in data plane

(c) Faults introduced in both data and control planes

(a) Faults introduced in control plane

72

Figure 3.3. Error Probability of NAT application

(b) Faults introduced in data plane

(c) Faults introduced in both data and control planes

(a) Faults introduced in control plane

73

Figure 3.3 presents the results for the NAT application. Similar trends can

be observed for this application as well. Particularly for the NAT application we

see that errors due to faults during data plane tasks have more impact on the

application behavior than the faults during control plane tasks. The results for the

remainder of the applications are not presented due to their similarities with the

presented results. However, all of them show identical characteristics of the

applications under erroneous execution. Overall, all the applications can sustain

faults to varying extents. For smaller fault rates we observed the execution of the

application without any observable error in the data structures and the application

output. For larger fault rates, on the other hand, we encountered fatal errors and

errors in the data structure values.

3.4.3 Fallibility Factor

In almost all the applications, we see that increasing the hardware fault rate

increases the fallibility factor. For lower fault introduction rate, we observe a

negligible change in fallibility factor, suggesting that the applications are not

affected by the hardware faults. However, with the increase in the fault

probabilities, the applications become vulnerable, which is properly reflected in the

fallibility factor values. We recorded the probability of different application errors

for each of the seven NetBench applications. The fallibility factor is obtained by

summing up the probability of all application errors for each application. Table 3-

A gives us a common framework to compare the behavior of the network

applications subjected under hardware faults. The MD5 application shows

74

maximum sensitivity towards errors. It has a fallibility factor of 0.261 when the

error introduction rate is highest (25% relative clock frequency). This rate means

that on average, in 26.1% of the packets differ from the execution without any

faults.

Table 3-A. Fallibility Factor of Different Applications
Fallibility Factor

Static Overclocking Rate – Relative clock Freq (Cr) Appln.
100% 75% 50% 25%

CRC 0.0023 0.0038 0.0073 0.0524

Tl 0.0010 0.0063 0.0159 0.1350

ROUTE 0.0003 0.0008 0.0013 0.0175

DRR 0.0000 0.0010 0.0023 0.0076

NAT 0.0003 0.0020 0.0035 0.0770

MD5 0.0000 0.0115 0.0552 0.2610

URL 0.0003 0.0013 0.0025 0.0177

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

route drr nat tl url md5 crc avrg
Applications

Pr
ob

ab
ili

ty

100% 75%

50% 25%

Figure 3.4. Fatal error probabilities for different clock rates.

3.4.4 Fatal Error Probability Measurements

We recorded the probability of a fatal error with increased clock frequency.

Unlike other errors, fatal errors may destroy the system integrity. This prompts to

75

ensure that the clock frequency should not reach a value that may result a high

probability of fatal error. Figure 3.4 depicts the fatal error probability for different

applications when there is no error detection scheme employed. Similar to the

fallibility results, we see that the fatal error probability is zero for smaller increases

in the clock rate. As we exceed 100% increase in the clock rate, we start seeing an

impact on the fatal error probability. Note that the fatal error probabilities in

Figure 3.4 are measured for the base architecture, which does not employ any error

detection scheme. Error detection schemes reduce the probability of fatal errors

dramatically. In fact, during the simulations of the architectures with error

detection, we have never encountered a fatal error.

3.4.5 Energy-Delay-Fallibility Measurements

The simulations presented in this section introduce faults during both the

control plane and the data plane. As we have discussed in Section 3.3.5, different

techniques are compared using the energy-delay2-fallibility2 product. To measure

the energy consumed during the applications we use three models. For the energy

consumption of the overall processor, we used the results presented by Montanaro

et al. [57]. The energy consumed by the caches when they are operated with full

frequency is found using CACTI [58]. When the clock frequency is increased, the

voltage swing decreases. The energy consumed by the cache linearly shrinks with

this decrease in the voltage swing. Therefore, we used the model presented in

Figure 2.2 to find the relative voltage swing for different clock rates. Particularly,

the energy consumed by the cache reduces by 45%, 19%, and 6% for relative clock

76

rates of 0.25, 0.5, and 0.75, respectively. To estimate the energy consumed by the

error detection scheme, we use the results presented by Phelan [59]. The level-1

data cache consumes 16% of the overall chip energy. Parity increases the energy

consumed during reads by 23%. Similarly, the energy consumed during writes

increases by 36%. We assumed that each word (32-bits) is protected by a single

parity bit. To measure the delay in the applications, we calculate the average

number of cycles spend for each packet. Note that we cannot use the total number

of execution cycles, because some simulations do not finish to completion due to

fatal errors. The fallibility factor is calculated as explained in Section 2.5.1.

Results for the ROUTE application are summarized in Figure 3.5. For

ROUTE application, we see that the best technique is the static technique with

50% relative clock cycle when two-strike recovery is used. For the CRC application

(Figure 3.6), on the other hand, the best configuration is the dynamic frequency

adaptation with three-strike recovery. When we compare these two applications,

we see that CRC is more resilient to faults, because due to its streaming nature it

already has a large cache miss rate. Therefore, additional cache accesses due to

errors have less effect on the execution time. As explained in Section 3.3.1, three-

strike eliminates some of the incorrect accesses to the level 2 cache that might

happen by the two-strike scheme. Therefore, three-strike improves the performance

for the CRC application because it reduces the pressure on the level 2 cache.

77

Figure 3.5. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configuration with Cr = 1, 0.75, 0.5, and
0.25 for the ROUTE application. The bars represent the relative energy-delay2-

fallibility2 product with respect to Cr = 1 with no-detection.

Figure 3.6. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the CRC application.

Figure 3.7. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the MD5 application.

78

Figure 3.8. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the TL application.

Figure 3.9. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the DRR application.

Figure 3.10. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the NAT application.

79

Figure 3.11. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 for the URL application.

Figure 3.12. Energy-delay2-fallibility2 product for the simulated configurations, the
dynamic configuration, and the static configurations with Cr = 1, 0.75, 0.5, and

0.25 the average application.

 Figure 3.7 and Figure 3.8 present the results for the MD5 and TL

applications, respectively. We see that similar to the ROUTE application, the

static technique with 50% relative clock cycle and two-strike recovery scheme gives

the best result. For the TL application, we see that the energy-delay2-fallibility2

product is reduced by as much as 43%. TL application has a large fraction of load

80

instructions. Therefore, reducing the cache access latency has a significant impact

on the overall performance.

One interesting result with the TL application (Figure 3.8) is the inability

of the dynamic scheme to reduce the energy-delay2-fallibility2 product for the one-

strike scheme. The reason for this is due to some initial errors, the dynamic

scheme gets late into the 0.5 region. Since the total number of instructions

executed for this application is small, the overall energy-delay2-fallibility2 remains

high. The results presented in Figure 3.9 and Figure 3.10 are for the DRR and the

NAT applications.

Figure 3.11 presents the results for the URL application. Figure 3.12, on the

other hand, gives the average of all the simulated applications. Overall, we see

that the static technique with 50% relative clock cycle and two-strike recovery

scheme gives the best result reducing the energy-delay2-fallibility2 product by 24%.

This is partially an artifact of the steps we have selected for the clock frequency.

Although when we set Cr to 0.25, we see a significant reduction in the energy

consumption, we also see a sharp increase in the error rates. Therefore, Cr = 0.5

almost always performs better than the Cr = 0.25. As a result, the dynamic

scheme also stays mostly in the Cr = 0.5 region and hence does not perform better

than the static scheme. Note that if we do not consider the errors, the static

approach with Cr = 0.5 and two-strike recovery scheme reduces the energy-delay

product of the processor by 17%, and the energy-delay2 product by 26%.

81

In almost all the applications, we see that without the error detection,

increasing the clock frequency increases the energy-delay2-fallibility2. The reasons

for this are two-fold. First, we take the square of the fallibility in our metric. Since

we increase the fallibility factor when we increase the clock frequency, there is a

significant increase in our metric. Second, we see that errors usually increase the

number of execution cycles. There are two reasons for this. First, erroneous load

operations usually result in misses in the cache. More importantly, we see that the

number of instructions executed also increases with the errors. This is mostly due

to the loops. If one of the values that affect the completion criteria changes, we see

that in most cases the number of iterations increase.

3.5. Previous Work on Resilient Architectures

One class of related work is in the area of fault tolerance. Traditionally,

fault tolerance has caught attention in the context of environments with heavy

concentration of alpha-particles and atmospheric neutrons [60]. Transient faults

induced by these particles are shown to decrease the reliability of processors [61].

Another area where there has been a strong emphasis on reliability is circuit

verification, which is an important problem in IC fabrication. Techniques exist to

study potential errors in the pre-silicon [62] stage and also subsequent to the

fabrication process [63]. More recently, designing computer systems for resiliency

[64] to transient faults has gained greater significance due to the combined effect of

higher integration densities, lower voltages, and faster clock frequencies. There

82

have been various studies utilizing redundancy to increase robustness for SMT

processors [65, 66], for superscalar processors [67], and for CMPs [68]. All of these

techniques aim to increase robustness. Our approach, on the other hand, reduces

it. Although this might seem controversial at a glance, our motivations are similar

to these studies: correctness cannot be achieved by optimizations only at the

circuit level. However, we propose to deal with the errors at the higher levels

instead of trying to eliminate them.

Validation methods such as fault injection are particularly attractive for

estimating the dependability of computer systems [69]. Mukherjee et al. introduces

the architectural vulnerability factor (AVF) for various processor components [70].

However, we are not aware of any study that investigates the application-level

behavior of networking programs under hardware faults. More importantly, these

studies still do not allow an incorrect execution of the program as we propose in

this work. Austin introduces DIVA, which is a method for enforcing correctness in

processors which can make mistakes because of the lack of complete verification

[6]. DIVA still aims to achieve correctness, whereas in this approach we reduce the

probability of correct execution.

83

B. STATISTICAL TASK ALLOCATION IN MULTICORE
NETWORK PROCESSORS

Chip multiprocessor designs are the most common types of architectures

seen in Network Processors. In such designs, there are numerous approaches to

implement interconnects. However, due to the trends in scalability of global

interconnects, we observe a shift towards ‘systolic array’ architectures where

different cores are connected through point-to-point links and the packets are

processed in a pipelined fashion. Intel’s IXP and Cisco’s Toaster processor fall into

this category. As the Network Processors are used to implement increasingly

complicated architectures, task distribution among the cores is becoming an

important problem. In this chapter, we propose a new task allocation analysis

scheme. This scheme relies on the inherent modular nature of the networking

applications and intelligently distributes modules among different execution cores.

An important problem that needs to be tackled in this aspect is the variation of

execution times of the modules. To address this problem, we have developed a

technique that uses the probability distribution of the execution times of different

modules in the networking applications. Furthermore, we have used overclocking

technique to optimize the performance of the allocated tasks. The combination of

statistical distribution of modules and the overclocking result in significant

performance improvements for representative architectures.

One of the most important bottlenecks for CMP processors in general and

particularly the Network Processor architectures, is the low scalability of the

84

interconnect networks. Although increasing the number of cores in the processor is

desirable to take advantage of the parallelism in the application, developing an

interconnect network to achieve efficient communication among cores becomes

complicated as the number of nodes is increased. Therefore, with the new

generation network processor architectures, we are seeing an increased emphasis on

local communication. For example, the Intel IXP 28xx [71, 72] architectures utilize

neighbor-to-neighbor links in addition to the global communication structures. In

such architectures, the utilization of the local communication links is arguably the

most important factor in determining the performance of the application. With the

increasing link speeds and the changes in the target applications, it is expected

that the number of execution cores in the processors will increase. Therefore, high

utilization of local communication links will become an obligation to achieve the

desired scalability in next-generation network processors. Clearly, the key factor

that determines the communication behavior is the task distribution. In other

words, the mapping of application functionality onto multiprocessing elements

must be performed intelligently to achieve the desired level of performance. In

most of the existing architectures, this task is left to the user. With the increasing

complexity of the architectures, this expectation from the user becomes limiting

and an automated task distribution scheme is highly desirable. In this chapter, we

propose a solution to this problem. Particularly, we present an automated task

allocation analysis scheme for network processors. We utilize the modular nature

observed in majority of networking applications. First, we divide the applications

85

into modules similar to CLICK [73] and NP-Click [74] environments. Then, we

profile the applications using a representative workload and perform a statistical

analysis on the behavior of different modules in the application. This analysis

provides us with the distribution of the execution times of different modules. Then,

we utilize this probability distribution information to allocate tasks among

different execution cores of the network processors. In addition to utilizing this

information to decide on task distribution, we also make decisions about which

modules should be replicated based on the analysis. Specifically, our contributions

in this chapter are as follows:

• We analyze the probability distribution of packet processing elements in a

modular networking applications,

• We present an intelligent methodology to allocate tasks among different

processor cores of a chip multiprocessor,

• We show experimental results investigating the impact of smart task

allocation.

Our main goal is to reduce the effect of the variation in the execution times

of the packets. To be more precise, we would like to schedule the tasks such that

the effects of variation will be minimized. The variation in the execution times is

an inherent property of computers. This is particularly true for CMPs, where

different cores are competing for a set of global resources (e.g., shared bus or the

shared memory). In addition, there is data-dependent variation, i.e., depending on

86

the input the execution time may vary. For example, a loop might be executed for

different number of iterations based on the input data. This uncertainty is even

more pressing if the cores implement multithreading (as commonly done for most

Network Processor architectures). The order of the thread selection and the order

of the packet arrival are likely to have a significant impact on the time of

completion for a single thread. This inherent variation in execution time is an

important reason for the complexity of task distribution. Consider a distribution

where TaskA is executed on ProcessorA and the results of this task is fed into

TaskB, which is executing on ProcessorB. If the execution times of these tasks were

constant, we could possibly arrange them such that the tasks allocated to

ProcessorA and ProcessorB will be equal execution time and hence both processors

will have 100% utilization. However, consider in this case, that TaskA is prolonged.

In that case, ProcessorB will complete the execution of TaskB and will remain idle

until TaskA is finished by ProcessorA. This will certainly reduce the overall

utilization of the resources and hence will result in degradation of performance.

Therefore, a task distribution scheme should consider the variation in execution

times while making resource allocation decisions. In this chapter, we describe such

a scheme.

We discuss the modular property of networking applications in Section 3.6.

Section 3.7 and 3.8 analyzes the implementation problems in networking processor

domain and explores possible solution. Section 3.9 gives an overview of the

applications used in our studies. Section 3.10 presents the statistical analysis of the

87

packet processing of modules in different networking applications. In Section 3.11,

we discuss our novel task allocation scheme and different optimizations

implemented on it. Section 3.12 presents the experimental results. In Section 3.13,

we discuss the related work followed by concluding remarks in Section 3.14.

3.6. Modularity in Network Applications
The Network Processor (NP) designers utilize two important properties of

networking applications. First, these applications consume and produce well-

defined data segments (network packets). This property leads the designers to

utilize intelligent memory controllers specifically designed to move packet data

to/from and within the processor. Secondly, for many of the networking

applications, though not all, these packets can be processed independently.

Therefore, there is a large amount of data level parallelism available in the

applications. The designers take advantage of this fact with the use of

multithreading and with multiple execution cores. Almost all of the NPs use a

variation of multithreading and have several execution cores.

Another important aspect that needs to be highlighted is the trend in the

NP architectures. Each new NP generation employs more execution cores than

their predecessors. Therefore, traditional communication structures between these

execution cores (global buses or cross-bar based fabrics) become less effective.

Many of the newer NPs employ special neighbor-to-neighbor communication

(systolic array) or enhanced interconnection networks to reduce the need for

88

accessing global structures. In such systems, effective task allocation becomes

particularly hard even for the most experienced programmers.

Table 3-B. Important characteristics of representative Network Processor Designs: exec.
cores is the number of execution cores, and parallelism technique is the technique(s) used

for task or instruction level parallelism (MT: Multi-Threading, VLIW: Very-Long
Instruction Word) in the execution cores

Processor # of cores Parallelism technique

Agere PayloadPlus 3 MT, VLIW
AMMC (MMC) nP7250 2 MT

Bay Microsystems Chespeake 2 MT
Broadcom BCM-1250 2 Superscalar

Cavium Octeon 16 MT
Cisco Toaster 16 VLIW

EZChip ~40 MT
Freescale C-5 16 MT
Hifn 5NP4G 16 MT

Intel IXP2800 16 MT
Intel IXP1200 6 MT

PMC-Sierra RM9000 2 Superscalar
Vitesse (Sitera) IQ1200 4 MT

Wintegra WinPath2 6 MT
Xelerated Xelerator X11 360 VLIW, MT

In the past, modular routers have gained much focus due to their ease of

designing. CLICK [73] and Baker [75] are examples of domain specific languages

designed for describing networking applications. We design our framework based

on the CLICK framework. CLICK is a flexible, software modular architecture,

which can build routers from fine-grained components. Each of these components,

known as element, performs a simple task, such as decrementing an IP packet’s

time-to-live (TTL) or IP header checking. They can easily be extended to do

complicated tasks (IP lookup, NAT). To build a router configuration, the user

chooses a collection of elements and connects them into a directed flow graph. The

nodes being elements, the connections between those elements represent a

89

forwarding path. Click configuration scripts are written in a simple language with

two important constructs: declarations create elements, and connections say how

they should be connected.

Figure 3.13. Click configuration for TTL decrement

The Click language is wholly declarative. It specifies what elements to

create and how they should be connected, not how to process packets procedurally.

Router manipulation tools can take advantage of these properties to optimize

router configurations offline or prove simple properties about them. The main

goals behind the Click language are usability and extensibility. Figure 3.13 shows a

Click diagram of a simple configuration that checks the TTL value of a packet. It

forwards the packet if the TTL value is non-negative. Otherwise, the packet is

discarded. More details about the programming model is available in the next

section.

3.7. Implementation Gap
Click is a natural environment for describing packet processing applications.

It is expected that networking applications should be mapped directly into a

FromDevice(eth0)

DecIPTTL ToDevice(eth1)

Discard

90

network processor. However, there is currently a large gap between Click and the

low level programming interface the network processors expose.

Click proposes a simple yet powerful concept of push-and-pull

communication between elements that communicate only via passing packets,

coupled with the rich library of elements. This is a natural abstraction that aids

designers in creating a functional description of their application. Note that, this is

in stark contrast to the main concepts required to program a network processor.

While implementing an application on this device, it is the programmer’s

responsibility to effectively partition an application across the different execution

cores, make use of special-purpose hardware, effectively arbitrate shared resources,

and communicate with peripherals. This mismatch of concerns between the

application model and target architecture is known as the implementation gap (see

Figure 8). To facilitate bridging this gap, there is a need for an intermediate layer,

called a programming model. It presents a powerful abstraction of the

underlying architecture while providing a natural way of describing applications.

3.8. Implementation Gap Closure Approaches
Different approaches have been proposed to solve the implementation gap.

Works in this area can be categorized into four major areas: library of application

components, programming language-based, refinement from formal models of

computation (MOCs), and run-time systems. In this section, we describe and

evaluate these alternatives.

91

Figure 3.14. Implementation Gap

The library of application components approach exports a collection of

manually designed blocks to the application programmer, who stitches these

together to create his application. The advantage of such an approach is a better

mapping to the underlying hardware, since the components are hand-coded. In

addition, these components implement an abstraction that is natural for an

application writer as the components are often similar to application model

primitives. The disadvantage of this approach is the need to implement every

element of the library by hand.

If only a limited number of library elements are needed, this approach may

be successful. However, in practice, we suspect a large number of elements are

needed as application diversity grows. This problem is further compounded when a

number of variants of each library element are needed.

92

A programming language approach utilizes a programming language that

can be compiled to the target architecture. With this approach, a compiler needs

to be written only once for the target architecture and all compiler optimizations

can be applied to all applications that are written for the architecture. The

principal difficulty with this approach is the requirement to compile to

heterogeneous architectures with multiple processors, special-purpose hardware,

numerous task-specific memories, and various buses. In addition, the programming

abstraction required to effectively create a compiler for such architectures would

likely force the programming language to include many architectural concepts that

would be unnatural for the application programmer. Examples of this alternative

include the numerous projects that have altered the C programming language by

exposing architectural features [76, 77].

Another class of approaches uses refinement from formal models of

computation (MOCs) to implement applications. Models of computation define

formal semantics for communication and concurrency. Examples of common MOCs

include Kahn Process Networks [78] and discrete-event. Because they require

applications to be described in an MOC, these approaches are able to prove

properties of the application (such as maximum queue sizes required and static

schedules that satisfy timing constraints). This class of solutions also emphasizes

application modeling and simulation [79]. The disadvantage of this method is that

implementation on heterogeneous architectures is inefficient because most

implementation paths require significant compiler support. As an example,

93

Edwards [80] has written a compiler to implement designs described in Esterel, a

language that implements the synchronous/reactive MOC [13]. However, his work

generates C code and relies on a C compiler for implementation on target

architectures. In addition, the MOCs used by these approaches may not be natural

design entry environments. For example POLIS requires all applications to be

expressed in co-design finite state machines [79].

Run-time systems offer another category of solutions to the implementation

gap. Run-time systems introduce dynamic operation (e.g. thread scheduling) that

enables additional freedom in implementation. Dynamic operation can also be used

to present the programmer with an abstraction of the underlying architecture (e.g.

a view of infinite resources). While run-time systems are necessary for general-

purpose computation, for many data-oriented embedded applications (like data

plane processing) they introduce additional overhead at run-time. Additionally,

some ASIP architectures have included hardware constructs to subsume simple

run-time system tasks like thread scheduling on the IXP1200 and inter-processor

communication (ring buffers on the Intel IXP2800 [72]). Examples of this approach

include VxWorks [81] and the programming interface for the Broadcom Calisto

[82].

Based on the trade-offs between the above approaches, Shah et al. proposed

a new programming model named as NP-Click [74]. It is an extended programming

model based on Click Router and implemented on the Intel IXP1200. It is a

combination of an efficient abstraction of the network processor with features of a

94

domain-specific language for networking. The result is a natural abstraction that

enables programmers to quickly write efficient code. It facilitates the difficulties of

programming network processors by taking advantage of hardware parallelism,

arbitration of shared resources, and efficient data layout.

We have used this programming model to perform a statistical task

allocation in CMP style network processors. As discussed later, the inherent

modularity of Click configurations facilitate my objective of optimized task

allocation. We have used statistical data in conjunction with the modularity

information to perform an effective task allocation among different execution cores

of a network processor.

3.9. Applications
We explore the effectiveness of our task allocation techniques by using it to

schedule four representative networking applications. This section describes the

application we simulate.

IPV4Router: We implement the data plane of an 8 port Fast Ethernet IP

Version 4 router [83]. This application is based on the network processor

benchmark specified by Tsai et al. [84]. A packet arriving on port P is to be

examined and forwarded on a different port P’. We use a static lookup table to

decide the next-hop location. It is determined through a longest prefix match

(LPM) on the IPv4 destination address field. The packet header and payload are

95

checked for validity and packet header fields’ checksum and TTL are updated.

Figure 35 shows this particular Click configuration tree.

Figure 3.15. Click configuration tree for the IPV4Router application

DRR: We extend the IP router demonstrated in the Click Modular Router

project. The router that forwards unicast packets in nearly full compliance with

the standards [83, 85, 86]. We introduce a queue which introduces packet by

pulling from a set of infinite packet source using deficit round robin (DRR)

scheduling [87].

RED: Random early detection is more likely to drop packets when there is

network congestion; when there are many packets in the queue servicing that link.

The RED element therefore queries router queue lengths when deciding whether to

drop a packet. For this application, we extend the Click IP router to handle

specialized routing tasks. Particularly, a complex IP router performs the following

tasks: two parallel T1 links to a backbone, between which traffic should be load

8 Different destinations

DropBroadcast0

DecIPTTL Discard

Discard

DropBroadcast0

DecIPTTL Discard

Discard

DecIPTTL CheckIPHeadeStrip(14)

DecIPTTL CheckIPHeadeStrip(14)

StaticIP-
Lookup

Discard

8 Different sources

96

balanced; division of traffic into two priority levels; fairness among the connections

within each priority level; RED dropping driven by the total number of packets

queued. Click's modular scheduling, queuing and dropping policy elements are used

in this application.

HOME_NODE: This application imitates an active home node in a network.

The home node proxy-ARPs for the mobile node, decapsulates packets from the

remote node, sending them onto the local network, and perform IP encapsulation

for packets destined for the mobile node. It also ensures that packets generated by

the address 1.0.0.10 are properly encapsulated.

3.10. Probability Distribution of Packets
In this section, we discuss the probability distribution of the packet

processing time in a Click modular application. For the sake of conciseness, we

describe the results for only the IPV4Router application in detail. The rest of the

applications are analyzed in the same fashion and their results are summarized at

the end of this section in Table 3-D. The simulation environment used to gather

the statistics is described in Section 3.12.1.

The IPV4Router application consists of 33 Click elements. It has five

different basic elements – Strip(8), CheckIPHeader(8),StaticIPLookup(1),

DropBroadcasts(8), DecIPTTL(8) [88]. Table 3-C shows a graphical representation

of the Click description of the router and the relation between the basic elements

(i.e., modules).

97

Table 3-C. Probability Distribution of IPV4Router Elements
Processing time threshold

Mean
(µ)

SD
(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ

strip0 241.28 29.31 50 0.64 0.64 0.64 0

strip1 232 22.11 34.19 33.33 0 0 0

strip2 220.18 25.24 31.81 25 0 0 0

strip3 216.05 19.87 35.06 20 3.63 0 0

chkip0 713.01 59.77 50 0.64 0.64 0.64 0.64

chkip1 695.22 31.48 34.63 33.33 0.86 0.43 0

chkip2 695.49 25.09 27.59 25 0.97 0 0

chkip3 694.63 21.77 20 20 2.33 0 0

RtLkUp 336.56 266.88 20.03 20.03 10.01 0.03 0.03

DBC0 212.30 21.18 34.32 28.57 1.29 0.18 0.18

DBC1 197.42 18.51 51.29 26.94 25 0.64 0

DBC2 210.45 26.50 18.39 2.16 0 0 0

DBC3 205.47 17.40 32.83 14.28 14.28 0 0

DcTTL0 317.78 20.34 26.45 12.98 2.09 0 0

DcTTL1 320.33 21.10 35.71 26.62 0 0 0

DcTTL2 315.96 19.6 20.99 17.09 1.29 0 0

DcTTL3 314.77 18.26 19.85 14.28 0.55 0 0

We execute the configuration for 5000 packets. During this execution, we

record the amount of time spent by each packet in different elements of the Click

router. Using these statistics, we find the mean and the standard deviation of the

execution times. Table 3-C presents the results for the 17 elements that have the

longest execution times in the configuration. Once we extract the mean (µ) and

standard deviation (σ) of processing time by each of the element, we compare

them against the data recorded for each packet traversed through it. The columns

in the Table 3-C record the percentage of packets that couldn’t be processed

within the slack given by the expression (µ+k.σ), where k is a positive constant.

This statistics is important for us, because it can be used as estimation for how the

variation will effect the utilization. In other words, if we pipeline the tasks

according to the mean only, a packet that takes longer than µ cycles to execute

98

will clog the pipeline and cause the utilization to decrease in the proceeding

processor. The results indicate that variation can indeed become an important

bottleneck. Particularly, if we only consider the average execution time in task

distribution, 32% of the packets on average will not finished within the expected

time and will likely cause performance degradation. In Section 3.12.2, we analyze

the applications and present experimental results showing that for an 8 processor

Network Processor, this variation can cause up to 23% underutilization of the

processors.

Table 3-D. Probability Distribution of Application Elements

Processing time threshold
 Mean(µ) SD(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ

DRR
Cl1 351.20 24.13 55.35 9.81 0.88 0.13 0.13

DRRelem 17032.70 76778.25 45.23 0.13 0.13 0.13 0.13
IPCheck 31.66 38.14 13.82 0.25 0.25 0.25 0.00
RtLkUp 349.70 220.44 22.86 22.86 0.63 0.13 0.13
ChkPnt 19552.00 46879.27 7.64 7.64 7.64 7.64 0.33
FixIP 219.20 14.64 34.83 25.87 0.00 0.00 0.00
Frag 183.94 18.11 53.23 23.38 4.48 0.00 0.00

RED
RED 834.80 142.74 39.33 6.78 6.61 5.72 0.06

StripHdr 204.00 9.89 25.08 9.17 7.17 5.08 2.33
GetIP 379.50 15.89 20.58 9.17 7.42 2.00 0.08
Strip2 209.00 13.60 23.83 16.00 9.67 0.17 0.00

IPEncap 469.70 17.65 33.50 15.50 3.00 0.17 0.17
SetIP 208.00 14.34 35.17 19.67 2.17 0.17 0.17

PrioSche 286.50 8.27 33.67 8.06 6.11 6.11 0.28
HOME_NODE

Classifier 319.98 30.02 59.50 8.58 1.19 0.11 0.08
Strip1 213.90 9.96 26.25 7.83 2.75 1.08 0.33

CheckIP 695.80 20.31 41.67 12.50 0.08 0.08 0.08
StripHdr 225.70 10.15 32.58 11.67 1.58 0.08 0.08
GetIP 386.50 40.60 59.92 17.42 0.83 0.08 0.08

99

We analyze all the applications following the identical procedure. Table 3-D

summarizes the statistical data obtained from different elements. Due to their

similar nature, we report the data for a few representative elements in each

application. Note that, the mean (µ) and standard deviation (σ) for different

instances of the same element vary depending on the packet contents. Similar to

the IPV4Router application, we see a large variation in the execution times of the

modules for all the applications.

3.10.2 Aggregate Probability Distribution

Although we have seen a variation in the execution time of individual

elements, the variations of different modules may cancel each other once they are

formed into “stages” that will be executed in different processors. For example, if

element1 and element2 are scheduled in a processor, if the execution time of

element1 is prolonged while the execution time of element2 shortened, the overall

variation in the execution time of the processor may remain constant. Therefore,

we also analyzed the variation in the aggregate task execution. We divide the

complete configuration tree into different stages. The boundary decision for each

stage is made based on the data obtained from the probability distribution of

individual elements. We use the expected execution time of the modules and form

n stages that are of approximately equal size. Subsequently, we perform a

probability analysis of packet processing in each of these stages. Table 3-E

presents the probability distribution of the IPV4Router application when the

processing path is divided into 4 stages. Note that, the selection of the number of

100

the stages is arbitrary, but we must highlight that the results are similar for

different number of stages. The results indicate that the standard deviation for the

aggregate elements is similar to the ones of the individual elements. Particularly,

on average 29% of the packets will cause an execution time exceeding the mean.

Table 3-E. Probability Distribution of IPV4Router Stages

Processing time threshold Stages

Mean
(µ)

SD
(σ) µ µ+σ µ+2.σ µ+3.σ µ+4.σ

Stage0 227.38 24.14 35.06 20.00 3.64 0.00 0.00

Stage1 691.18 30.48 23.19 14.29 1.86 0.08 0.00

Stage2 500.43 29.52 27.18 24.31 5.66 0.11 0.11

Stage3 314.72 20.33 27.78 23.14 7.14 0.28 0.00

3.11. Statistical Task Allocation in NPs
In this section we describe how the statistical analysis is utilized during the

assignment of tasks to execution cores (i.e., task allocation). The main objective of

allocating tasks is to maximize the utilization of different execution cores of the

network processor. This, in return, results in an increase in the throughput

supported by the processor. In the following, we first describe our target

architecture. Then, we present two module distribution schemes. The first assigns

the tasks to the processors by simply considering the average execution time. The

second one utilizes the standard deviation in addition to the average. If the

number of execution cores exceeds the number of modules in an application, the

modules need to be replicated. Section 6.3 describes how this replication can be

performed effectively by taking advantage of the statistical information.

101

3.11.1 Architecture Description

In this work, we consider a systolic array architecture. In this architecture,

the execution cores are arranged in a pipelined fashion. In other words, processors

are logically aligned in a single dimension and each processor is connected to its

left and right neighbors. In addition, for the communication patterns, which

cannot be satisfied by the local links, a shared bus that connects all execution

cores is utilized. Although generic, this architecture represents most of the existing

Network Processor architectures. Our goal is to develop an automated method to

distribute the tasks in an application uniformly over the cores. Once an execution

core performs the task allocated to it, it forwards the processed packet as well as

the necessary data to the next core.

3.11.2 Module Distribution

In this section, we describe how tasks or modules are distributed among

execution cores. Note that, each Click element represents a conceptually simple

computation. A module is defined as a subset of Click elements used in an

application.

The Click configuration tree describes the flow of the application. When we

combine the statistical data of individual Click elements along with the Click

configuration tree, we have a tree structure depicting the estimated delay of a

single packet processing. The overall flow of the processing task can be divided

into stages. The objective while dividing the application into stages is to form a

group of stages with equal expected delay. Note that, in our work a stage and a

102

module is synonymous. From this point onward, we would call each stage a

module.

Figure 3.16. Illustration of module distribution in IPV4Router application

We utilize the average processing time of each element to form the modules.

Assuming the tasks performed by each module is independent of each other; the

average delay of each module is expected to be the sum of average processing time

the Click elements. For a typical networking application, any particular packet

would traverse one of the many alternate routes from start to end. We divide each

of those paths into equal number of segments. The elements used in a particular

stage of all the alternative paths form a single module. Note that, for a particular

packet, only a subset of the all the elements in a module would be used.

To perform the module distribution, we use a three-step algorithm. In the

first step, the total execution time of a packet is found. In the second step, the

8 Different destinations

DropBroadcast0

DecIPTTL Discard

Discard

DropBroadcast0

DecIPTTL Discard

Discard

InfiniteSource CheckIPHeadeStrip(14)

InfiniteSource CheckIPHeadeStrip(14)

StaticIP-
Lookup

Discard

8 Different sources

Two Stages

Four Stages

103

stages are formed. In the third step, we perform local optimization to improve the

task distribution. The algorithm starts from the root(s) of the Click configuration

tree and traverses towards the leaf(s) of it. Each element is first assigned a weight

equal to its expected mean execution time. Then, using a depth-first-search

scheme, the algorithm assigns total weights to each element. Total weight of a

child is equal to the sum of the total weight and the mean execution time of its

parent. The selection of the child that will be traversed next is performed using

the execution statistics. Particularly, the processing of a parent is followed by the

processing of the most frequently executed child. This way, we follow the path

that a packet would follow if there were no exceptions. If an element is visited

before, its total weight will not be changed. The maximum total weight among the

leaf nodes is selected as the execution time of a packet. Then, the maximum

execution time is divided into the number of stages required (for a 4-core

processors, the number of stages is equal to 4). This gives us the expected

execution time for each stage. In the second stage of the algorithm, we again start

from the root(s). Particularly, all the root(s) are first placed on stage 0. Then, the

children of the root(s) are one by one added to the current stage until the total

expected execution time of the stage reaches the average execution time of a

packet calculated in step 1 of the algorithm. Once the average time is reached, a

new stage is started. This process continues until all the elements are contained in

a stage. Once this step is completed, we perform a local optimization stage where

all the stage boundaries are considered. If moving an element from one stage to the

104

other (the move can be from stage i to i+1 or vice versa) reduces the overall

variance in the total execution times of the stages, then the location of the element

is changed. We traverse the stages until no element can be moved. This initial task

distribution scheme is called the Base Task Distribution (BTD). Figure 3.16 shows

BTD scheme results on the IPV4Router application.

The statistical data obtained for each Click element shows on average

approximately 30% of the data packets couldn’t be processed within the mean

processing time (µ). A slack of the form k.σ in the estimated processing time helps

a particular element to process a packet within the estimated delay. Therefore,

instead of forming the stages using the mean processing time (µ), we form the

stages using µ + k.σ as the expected execution time. In other words, the weight of

each tree node (element) is set to µ + k.σ. This scheme is called Extended Task

Distribution (ETD). The intuition behind ETD is to allow each element an

extended slack to process a packet. By allowing an extended processing delay, we

expect more packets to be processed within the expected processing time,

improving the resource utilization in the Network Processor. We have performed a

number of experiments with varying the k value. Our experiments reveal that the

optimal point across the applications is achieved for k = 3. The detailed

experiments are described in Section 3.12.

3.11.3 Selective Module Replication

It is normal to encounter a situation where the number of different modules

available in an application is less than the available execution core. In such cases,

105

we replicate the modules to parallelize the packet processing for that particular

module. This way, the number of total modules is increased and the task

distribution can be performed more evenly. However, instead of a naive replication

scheme, we select the modules with the highest mean processing times. This

replication scheme is called Selective Replication (SR). The intuition behind SR is

to allow a module run faster if it is one of the slower (or longer) ones. Once we

replicate a module, the two new modules are assigned a weight equal to the half of

the weight of the original module. This replication is continued until we generate

enough modules for the given number of processors.

The Click elements can perform a variety of unit task. It can do simple

computations like calculating checksum of a packet. At the same time, a single

element can be used to implement DRR scheduling [87] . As a result, the average

processing time for each element varies over a long range. In a typical application,

we can expect a module to contain elements, which are used in two alternate

routes and one of them has a larger average processing time than the other. Under

the SR technique, we would replicate both the elements in execution cores.

Whenever a packet traverses a ROUTE involving the element with smaller

processing delay, the execution core would sit idle for most of its time. This would

reduce the utilization of the core that directly contradicts our objective for task

allocation. To counter this problem, we propose the Extended Selective Replication

(ESR). In ESR, we select the elements with longer average processing time in a

module and replicate them over more than one execution core. The parallelization

106

of the longer module reduces the total processing time of the module. As a result,

the utilization of the execution cores performing the module task increases.

Additionally, we consider an extended slack version of the SER technique where

we allow an extra slack of k.σ for each module. We call this technique as the

Extended Selective Replication (ESR).

3.11.4 Discussion

We must note that our overall algorithm is based on profiling information.

In general, the success of a profiling scheme is largely dependent on the correct

selection of the input data sets. However, our experience with the networking

applications studied in this research work shows that they exhibit very similar

behavior even with different input packet traces. Particularly, we have tested the

four applications using three different sets of packets from the NLANR traces. For

the three input sets, the mean execution times and the standard deviation for the

four applications varied by less than 3%. On the other hand, our experiments

shows that the behavior of the applications was very much dependant on the

“internal” data structures. For example, a change in the routing table structures

used in IPV4Router application has a significant impact on the mean execution

time of a number of elements. Therefore, to achieve effective task distribution, a

user needs to carefully select the internal structures that will represent the working

conditions of an application.

107

3.12. Experiments

3.12.1 Experimental Setup

The SimpleScalar/ARM version 3.0 simulator [89] is used to evaluate the

proposed techniques. We modified the processor configuration to model a processor

similar to execution cores in a variety of NP architectures. We compiled the Click

router to run in the user level mode. It is modified to run in collaboration with the

SimpleScalar simulator. The SimpleScalar simulator is modified to record the

behavior of every packet within a configuration. With the use of marker elements

within the configuration, we track the every packet within a click configuration

and record the performance of Click elements processing the packets. We simulate

four representative networking applications as discussed in Section 3.9.

We perform two sets of experiments. First, we analyze the proposed task

allocation scheme from the throughput perspective. Particularly, we measure the

throughput for increasing number of processors. In the second set of experiments,

we study the effectiveness of the proposed optimizations on the task allocation. We

measure the resource (i.e., processor) utilization of the studied applications with

BTD, ETD, SR, and ESR schemes.

3.12.2 Throughput Analysis

We have analyzed the system throughput under the task distribution and

the replication schemes. For the processor with 2, 4, and 8 cores, we measure the

average throughput of the system. Figure 3.17 through Figure 3.20 describe the

relative throughput of the Multicore systems for the experimental applications.

108

The figures present the results for 4 variations as described in Section 3.11: Base

Task Distribution (BTD), Extended Task Distribution (ETD), Selective

Replication (SR), and Extended Selective Replication (ESR). Note that the

distribution of stages in SR is based on BTD and ESR uses ETD strategy to place

the modules into processor cores.

As we describe in Sections 3.11.2 and 3.11.3, ESR and ETD schemes use µ

+ kσ as the expected processing time. Therefore, we need to select a k value. Our

tests with different k values showed that k=3 gives the best results overall. For

small k values, the stages for ESR and ETD were identical to those of SR and

BTD, respectively. For larger k values, on the other hand, the elements with large

variance were assigned to single cores (e.g, stages formed by only such elements).

If the execution time for a packet is close to or smaller than the mean processing

time, this particular core is underutilized, reducing overall utilization. The optimal

point is achieved when both the producer and the consumer are utilized fully. The

selection of k=3 is the closest case to this scenario.

Figure 3.17 through Figure 3.20 present relative performance achieved with

respect to single core execution of the original application after applying the

proposed schemes. We see that task distribution is highly scalable for all the

schemes. On average, for 2, 4, and 8 processors, BTD scheme achieves a relative

throughput of 1.78, 3.25, and 6.15, respectively. The best throughput improvement

is observed for DRR application. The reason for this behavior lies in the unique

nature of this application. DRR contains two elements with large execution times.

109

Hence, we can achieve close to perfect task distribution for two processors. With

SR schemes, the relative throughput for 2, 4, and 8 processors are 1.84, 3.40, and

6.42, respectively. For all the applications, we can see that SR performs better

than BTD scheme. Due to replication of the processing elements that takes longer

time, SR scheme improves the overall utilization of the processing cores. We can

notice the improvement for higher number of cores (4 or 8) as that allows us for

intelligent allocation of resources. The best performance is observed for the

IPv4Router application. It has a relative throughput of 6.55 for 8 processors. As

shown in Table 2, the IPv4Router application has a large variation of processing

time for different elements. This variation gets benefited by the SR scheme to have

even processing time for each pipelined stage and subsequently resulting high

throughput scalability.

The extended version of BTD and SR includes an extra slack of 3σ to the

expected processing time of the elements while task allocation. As shown in the

figures, this results in a throughput improvement for almost all the cases. The

extended schemes perform particularly well for the RED application. For ESR, the

best performance is observed for the 8-core configuration, when the throughput

reaches 7, a 12.5% improvement over BTD. The reason for this improvement lies

in the nature of this application. RED consists of a number of elements with mean

processing times close to each other. Therefore, by considering the standard

deviation in the execution times, we see that the stage formations can be

significantly changed.

110

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

Pr
oc

es
so

r T
hr

ou
gh

pu
t

2
4
8

Figure 3.17. Processor throughput for DRR application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

Pr
oc

es
so

r T
hr

ou
gh

pu
t

2
4
8

Figure 3.18. Processor throughput for RED application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

Pr
oc

es
so

r T
hr

ou
gh

pu
t

2
4
8

Figure 3.19. Processor throughput for Home_Node application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

Pr
oc

es
so

r T
hr

ou
gh

pu
t

2
4
8

Figure 3.20. Processor Throughput in Route application

111

For other applications that are dominated by a few elements, consideration

of the extended processing times usually does not cause a significant change in the

stage formation. This is especially true for the DRR application, where the

majority of the processing time is dominated by two modules. Moreover, ETD

scheme always improves the throughput for 8 processor configurations. On

average, for all four applications, it improves the throughput by 4.4%. On the

other hand, the ESR scheme achieves a relative throughput of 1.90, 3.49, 6.74 for

2, 4, and 8 core processors, respectively, aggregated over all four applications.

Henceforth, the combination of Selective Replication and Extended Slack results

significant throughput improvement. On average, it improves the throughput by

6.4%, 8.4%, and 9.9% for 2, 4, and 8 processors as compared to the BTD scheme.

We must note that the overall performance improvement achieved by our

proposed schemes is synergistic. While the consideration of variance (ETD) and

replication (SR) improve the performance by 4.4% and 4.3%, respectively, their

combination (ESR) provides 9.9% improvement.

3.12.3 Resource Utilization Analysis

In the second set of experiments, we measure the average utilization of the

cores. Figure 3.21 describes the mean utilization percentage of the cores for the

DRR application. The figure presents the results for 4 variations as described in

Section 5: the Base Task Distribution (BTD), the Extended Task Distribution

(ETD), the Selective Replication (SR), and the Extended Selective Replication

(ESR). The other applications follow the similar trends.

112

70

75

80

85

90

95

100

2 4 8

BTD ETD SR ESR

Figure 3.21. Resource Utilization in DRR application

For almost all the applications, we see that the ESR scheme gives the best

utilization. In general, we see that both of our optimizations (replication and

extended processing time consideration) increase the utilization. Particularly, SR

almost always performs better than the BTD. A larger number of elements are

useful for achieving a higher utilization. With the larger number of elements, we

can form stages that are close to each other in the execution times. The only

exception to this rule is the DRR application executed on 2 cores. For this

application, SR and BTD provide the same throughput. The reason for this

behavior lies in the unique property of the DRR application. DRR contains two

elements with large execution times. Hence, without replication, we can achieve

close to perfect task distribution. Particularly, DRR achieves the best utilization

for 2-core processor with 95%, which cannot be improved with the SR scheme. In

addition, we see that the ETD and ESR schemes always perform better than the

BTD and SR schemes, respectively. We observe a similar trend for the remaining

three applications. Overall, the ESR scheme achieves the best utilization with 95%,

113

89%, and 84% on average for the processors with 2, 4, and 8 cores, respectively,

aggregated over all four applications. The average utilization for the BTD scheme,

on the other hand, is 88%, 81%, and 77% for the processors with 2, 4, and 8 cores,

respectively.

3.13. Related Work on Task Allocation
Task allocation has been an active research area in a number of domains. In

behavioral synthesis research, the objective is to assign operations to hardware and

optimize the usage of storage and communication paths [90]. While analogous to

the problem faced here, these approaches are best suited for synthesizing datapath

elements for small computational kernels. In the multiprocessor domain, Chekuri

et al. [91] and Shachnai [92] proposed approximation algorithms to solve the

problem for general multiprocessor models. However, they fail to consider practical

resource constraints and do not take into account thread and storage limitations,

which are critical factors that affect the quality of the mapping to heterogeneous

ASIP architectures.

We have used Click infrastructure for our experimentation. It is the most

relevant and established academic C++ programming model and environment for

building packet processing applications on a single, general-purpose, processor.

Shangri-La [93] is a work that matches our interest pretty closely. Shangri-La is

based on Baker [75] that bears many similarities to Click, especially in regards to

its modeling of communication channels (CCs). However, Their approach is

significantly different than ours and we specifically concentrate on mapping the

114

tasks to cores. The optimizations presented in their scheme do not consider the

variations observed in the packet execution. Due to architectural and technology

differences, it is difficult to make any performance comparison between our system

and theirs. Gordon et. al. [94] proposed schemes that employs task distribution

among different cores similar to ours. The novelty of our scheme lies on the fact

that the task distribution is based on the statistical properties of the network

packets.

Plishker [95] exploited the flexible framework of ILP to generate optimal

solutions to the mapping problem. Such techniques are usually computationally

expensive. Srinivasan et al. [96] considered the scheduling problem for the Intel

IXP1200 and presented a theoretical framework in order to provide service

guarantees to applications. However, their methodology was not tested with real

network applications.

A number of programming environments were proposed for NPs. NP-Click

[74] is an extended programming model based on Click Router. It is implemented

on the Intel IXP1200 architecture. Memik and Mangione-Smith [97] proposed a

programming environment that considers the task allocation. However, none of

these techniques used the variation in execution time to optimize the allocation

schemes. Datar and Franklin [98] proposed greedy-pipe algorithm to solve

problems associated with determining optimal application task assignments for

pipelines in CMP based NP. However, their study is performance oriented and the

execution core utilization has not done by them.

115

3.14. Conclusions
In this chapter, we have discussed the application of holistic architecture

approach at the application level of abstraction. First, we proposed the design and

utilization of clumsy packet processors. Clumsy packet processors use the

robustness available in the networking applications to increase the efficiency of

hardware structures while increasing their fault probabilities. Overall, this results

in better execution efficiency and reduced energy consumption. Particularly, we

have shown how the access delay and energy consumption of a data cache can be

reduced while increasing the hardware faults during accesses. We developed a

realistic model that estimates the fault probability of the cache for a given clock

frequency. Thus, a clumsy processor can increase the clock frequency of its data

cache and reduce its energy consumption. We have also defined various

application-specific error metrics that is used to measure the “fallibility” of the

processor. Particularly, we have proposed the energy-delay-fallibility product

metric, which can be used to measure the trade off between the energy, execution

time, and the error probability. We have presented a scheme to adapt the

frequency of the data cache to adjust to the application requirements. Our

simulations reveal that there is a significant gap between the specifications of the

circuit designer and the optimal clock frequency in terms of energy-delay2-

fallibility2 product.

We have also presented a method for allocating tasks in Network

Processors. The task allocation scheme utilized the modular nature of networking

116

applications. Variation in execution time is an inherent property of processing. The

goal is to estimate this variation for different parts of the code and perform the

task allocation accordingly. Our scheme assigns a module to each execution core of

the Network Processor. The variance in packet processing time is used to allow

extra slack in each module. In addition, we present two schemes to replicate

modules if the number of modules in the application is low. The first one (SR)

simply replicates the modules based on their execution time, whereas the second

one (ESR) considers the variation in execution time of the modules when making

replication decisions. Results reveal several important characteristics of our

proposed schemes. First, they show that the base task distribution scheme achieves

high levels of scalability. In addition, the extended processing time and replication

scheme help to improve the performance.

117

CHAPTER 4

USER-DIRECTED POWER MANAGEMENT

The increasing importance of low-power VLSI design has resulted in

numerous power-reduction techniques in circuits, architectures, and operating

systems. Energy consumption has traditionally been one of the primary design

criteria for mobile systems. It determines battery life and is therefore of great

importance to end-users of mobile systems, a huge and growing population. In

line-powered systems, on the other hand, energy consumption is important due to

its impact on power dissipation, which affects cost and noise. As manufacturing

technologies are enhanced, more and more transistors can be packed into a given

area, increasing the power density. As a result, in high-end microprocessors, the

chip temperature during execution is elevated, affecting performance, reliability,

and integrated circuit (IC) lifetime.

Dynamic Voltage and Frequency Scaling (DVFS) is one of the most

commonly used power reduction techniques in high-performance processors and is

the most important OS power management tool. DVFS is generally implemented

in the kernel and it varies the frequency and voltage of a microprocessor in real-

118

time according to processing needs. Although there are different versions of DVFS,

at its core DVFS adapts power consumption and performance to the current

workload of the CPU. Specifically, existing DVFS techniques in high-performance

processors select an operating point (CPU frequency and voltage) based on the

utilization of the processor. While this approach can integrate information

available to the OS kernel, such control is pessimistic:

• Existing DVFS techniques are pessimistic about the user. Indeed, they

ignore the user, assuming that CPU utilization or the OS events prompting it

are sufficient proxies. A high CPU utilization simply leads to a high frequency

and high voltage, regardless of the user’s satisfaction or expectation of

performance.

• Existing DVFS techniques are pessimistic about the CPU. They assume

worst-case manufacturing process variation and operating temperature by

basing their policies on loose worst-case bounds given by the processor

manufacturer. A voltage level for each frequency is set such that even the

slowest shipped processor of a given generation will be stable at the highest

specified temperature.

In response to these observations, on which we elaborate in Sections 4.1

and 4.2, we have developed two new power management techniques that can be

readily employed independently or together. This work is done in collaboration

119

with Bin Lin who is a graduate student interested in Systems research. In

particular, we introduce the following techniques.

User-Driven Frequency Scaling (UDFS) uses direct user feedback to drive

an online control algorithm that determines the processor frequency (Section 4.1).

Processor frequency has strong effects on power consumption and temperature,

both directly and also indirectly through the need for higher voltages at higher

frequencies. The choice of frequency is directly visible to the end-user as it

determines the performance he sees. There is considerable variation among users

with respect to the satisfactory performance level for a given workload mix. UDFS

exploits this variation to customize frequency control policies dynamically to the

individual user. Unlike previous work (Section 4.5), this approach employs direct

feedback from the user during ordinary use of the machine.

Process-Driven Voltage Scaling (PDVS) creates a custom mapping from

frequency and temperature to the minimum voltage needed for CPU stability

(Section 4.2), taking advantage of process variation. This mapping is then used

online to choose the operating voltage by taking into account the current operating

temperature and frequency. Researchers have shown that process variation causes

IC speed to vary up to 30% [99]. Hence, using a single supply voltage setting does

not exploit the variation in timing present among processors. We take advantage

of this variation via a customization process that determines the slack of the

individual processor, as well as its dependence on operating temperature. This

120

offline measurement is used online to dynamically set voltage based on frequency

and temperature.

4.0.1 Experimental Setup

Our experiments were done using an IBM Thinkpad T43p with a 2.13 GHz

Pentium M-770 CPU and 1 GB memory running Microsoft Windows XP

Professional SP2. Although eight different frequency levels can be set on the

Pentium M-770 processor, only six can be used due to limitations in the SpeedStep

technology.

In all of our studies, we make use of three application tasks, some of which

are CPU intensive and some of which frequently block while waiting for user

input:

• Creating a presentation using Microsoft PowerPoint 2003 while listening to

background music using Windows Media Player 10. The user duplicates a

presentation consisting of complex diagrams involving drawing and labeling,

starting from a hard copy of a sample presentation.

• Watching a 3D Shockwave animation using the Microsoft Internet Explorer

web browser. The user watches the animation and is encouraged to press the

number keys to change the camera’s viewpoint. The animation was stored

locally. Shockwave options were configured so that rendering was done entirely

in software on the CPU.

121

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular and widely-

used First Person Shooter game. There were no constraints on user gameplay.

In the following sections, we describe the exact durations of these tasks for

each user study and additional tasks the user was asked to undertake. In general,

our user studies are double-blind, randomized, and intervention-based. The default

Windows DVFS scheme is used as the control. We developed a user pool by

advertising our studies within a private university that has many non-engineering

departments. We selected a random group of users from among those who

responded to our advertisement. While many of the selected users were CS, CE, or

EE graduate students, our users included staff members and undergraduates from

the humanities. Each user was paid $15 for participating. Our studies ranged from

number of users n=8 to n=20, as described in the material below.

4.1. User-Driven Frequency Scaling
Current DVFS techniques are pessimistic about the user, which leads them

to often use higher frequencies than necessary for satisfactory performance. In this

section, we elaborate on this pessimism and then explain our response to it: user-

driven frequency scaling (UDFS). Evaluations of UDFS algorithms are given in

Section 4.3.1.

4.1.1 Pessimism about the user

Current software that drives DVFS is pessimistic about the individual

user’s reaction to the slowdown that may occur when CPU frequency is reduced.

122

Typically, the frequency is tightly tied to CPU usage. A burst of computation due

to, for example, a mouse or keyboard event brings utilization quickly up to 100%

and drives frequency, voltage, temperature, and power consumption up along with

it. CPU-intensive applications also cause an almost instant increase in operating

frequency and voltage.

In both cases, the CPU utilization (or OS events that drive it) is

functioning as a proxy for user comfort. Is it a good proxy? To find out, we

conducted a small (n=8) randomized user study, comparing four processor

frequency strategies including dynamic, static low frequency (1.06 GHz), static

medium frequency (1.33 GHz), as well as static high frequency (1.86 GHz). The

dynamic strategy is the default DVFS policy used in Windows XP Professional.

Note that the processor maximum frequency is 2.13 GHz. We allowed the users to

acclimate to the full speed performance of the machine and its applications for 4

minutes and then carry out the tasks described in Section 4.0.1, with the following

durations:

- PowerPoint (4 minutes in total, 1 minute per strategy)

- Shockwave (80 seconds in total, 20 seconds per strategy)

- FIFA (4 minutes in total, 1 minute per strategy)

Users verbally ranked their experiences after each task / strategy pair on a

scale of 1 (discomfort) to 10 (very comfortable). Note that for each application and

user, strategies were tested in random order.

123

Figure 4.1 illustrates the results of the study in the form of overlapped

histograms of the participants’ reported comfort level for each of four strategies.

Consider Figure 4.1(a), which shows results for the PowerPoint task. The

horizontal axis displays the range of comfort levels allowed in the study and the

vertical axis displays the count of the number of times that level was reported.

The other graphs are similar.

User comfort with any given strategy is highly dependent on the

application. For PowerPoint, the strategies are indistinguishable in their

effectiveness. For this task, we could simply set the frequency statically to a very

low value and never change it, presumably saving power. For animation, a higher

static level is preferred but the medium and high frequencies are statistically

indistinguishable from the dynamic strategy despite not using as high a frequency.

For the game, the high static setting is needed to match the satisfaction level of

the dynamic strategy. However, that setting does not use the highest possible

frequency, which was used by the dynamic strategy throughout the experiment.

Comfort with a given strategy is strongly user-dependent, i.e., it is

important to note that for any particular strategy, there is considerable spread in

the reported comfort levels. In addition to the power-specific results just described,

we note that Gupta et al. [100] and Lin et al. [101] have also demonstrated a high

variation in user tolerance for performance in other contexts. Our dynamic policy

automatically adapts to different users and applications. Hence, it can reduce

power consumption while still achieving high user satisfaction.

124

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r
co

u
nt

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10
Comfort level

U
se

r
co

u
n

t

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

Comfort Level

A (dynamic)

2 (1.86GHz)

4 (1.33GHz)

5 (1.06GHz)

Figure 4.1. User pessimism.

(a) PowerPoint

(b) 3D Animation

(c) FIFA Game

125

4.1.2 Technique

To implement user-driven frequency scaling, we have built a system that

consists of client software that runs as a Windows toolbar task as well as software

that implements CPU frequency and temperature monitoring. In the client, the

user can express discomfort at any time by pressing the F11 key (the use of other

keys or controls can be configured). These events drive the UDFS algorithm. The

algorithm in turn uses the Windows API to control CPU frequency. We monitor

the CPU frequency using Windows Performance Counter and Log [102] and

temperature using CPUCool [103].

It is important to note that a simple strategy that selects a static frequency

for an application (and/or for a user) is inadequate for three reasons. First, each

user will be satisfied with a different level of performance for each application.

Finding these levels statically would be extremely time consuming. Second, typical

users multitask. Capturing the effects of multiple applications would necessitate

examining the power set of the application set for each individual user, resulting in

a combinatoric explosion in the offline work to be done. Finally, even when a user

is working with a single application, the behavior of the application and the

expected performance varies over time. Applications go through phases, each with

potentially different computational requirements. In addition, the user’s expected

performance is also likely to change over time as the user’s priorities shift. For

these reasons, a frequency scaling algorithm should dynamically adjust to the

individual user’s needs.

126

Responding to these observations, we designed algorithms that employ user

experience feedback indicated via button presses.

4..1.2.1 UDFS1 Algorithm

UDFS1 is an adaptive algorithm that can be viewed as an extension/variant

of the TCP congestion control algorithm. The TCP congestion control

algorithm [104-106] is designed to adapt the send rate dynamically to the available

bandwidth in the path. A congestion event corresponds to a user button press,

send rate corresponds (inversely) to CPU frequency, and TCP acknowledgments

correspond to the passage of time.

UDFS1 has two state variables: r, the current control value (CPU

frequency, the smaller the value, the higher the frequency.) and rt (the current

threshold, integer value). Adaptation is controlled by three constant parameters: ρ�,

the rate of increase, α�=f(�ρ), the slow start speed, and β�=g(ρ�), the additive

increase speed. Like TCP, UDFS1 operates in three modes, as described below.

Slow Start (Exponential Increase): If r < rt, we increase r

exponentially fast with time (e.g. r ∞ 2αt). Note that frequency settings for most

processors are quantized and thus the actual frequency changes abruptly upon

crossing quantization levels.

User event avoidance (Additive Increase): If no user feedback is

received and r ≥ rt,, r increases linearly with time, r�� ∞ βt.

127

User event (Multiplicative Decrease): When the user expresses

discomfort at level r we immediately set rt=rt-1 and set r to the initial (highest)

frequency.

This behavior is virtually identical to that of TCP Reno, except for the

more aggressive setting of the threshold.

Unlike TCP Reno[106] , we also control ρ�, the key parameter that controls

the rate of exponential and linear increase from button press to button press. In

particular, for every user event, we update � as follows:

)1(1
AVI

AVIi
ii T

TT −
×+=+ γρρ

where Ti is the latest inter-arrival time between user events. TAVI is the

target mean inter-arrival time between user events, as currently preset by us. �

controls the sensitivity to the feedback.

We set our constant parameters (TAVI=120, α�=1.5, β�=0.8, γ=1.5) based

on the experience of two of the authors using the system. These parameters were

subsequently used when conducting a user study to evaluate the system

(Section 4.3). Ideally, we would empirically evaluate the sensitivity of UDFS1

performance to these parameters. However, it is important to note that any such

study would require having real users in the loop, and thus would be quite slow.

Testing five values of each parameter on 20 users would require 312 days (based

on 8 users/day and 45 minutes/user). For this reason, we decided to choose the

128

parameters based on qualitative evaluation by the authors and then “close the

loop” by evaluating the whole system with the choices.

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:36:52 8:37:43 8:38:43 8:39:40 8:40:35 8:41:38 8:42:32 8:43:26 8:44:28

Time

P
ro

ce
ss

o
r

fr
eq

u
en

cy

UDFS1 Windows DVFS

(a) UDFS1 Frequency Traces

500

700

900

1100

1300

1500

1700

1900

2100

2300

8:54:00 8:54:40 8:55:23 8:56:11 8:56:58 8:57:41 8:58:24 8:59:08 8:59:52 9:00:32 9:01:12 9:01:5

Time

P
ro

ce
ss

o
r

fr
eq

u
en

cy

UDFS2 Windows DVFS

(a) UDFS2 Frequency Traces

Figure 4.2. The frequency for UDFS schemes during FIFA game for a

representative user.

129

Figure 4.2(a) illustrates the execution of the UDFS1 and Windows DVFS

algorithms for a typical user during the FIFA game task. Note that Windows

DVFS causes the system to run at the highest frequency during the whole

execution period except the first few seconds. On the other hand, the UDFS1

scheme causes the processor frequency to increase only when the user expresses

discomfort (by pressing F11). Otherwise, it slowly decreases.

4..1.2.2 UDFS2 Algorithm

UDFS2 tries to find the lowest frequency at which the user feels

comfortable and then stabilize there. For each frequency level possible in the

processor, we assign an interval ti, the time for the algorithm to stay at that level.

If no user feedback is received during the interval, the algorithm reduces the

frequency from ri to ri+1, i.e., it reduces the frequency by one level. The default

interval is 10 seconds for all levels. If the user is irritated at control level ri, we

update all of our intervals and the current frequency level as follows:

ti-1 = αti-1

tk = βtk, ∀k : k ≠ i-1

i = min(i-1,0)

Here �α > 1 is the rate of interval increase and β �< 1 is rate of interval

decrease. In our study, α �= 2.5 and � β = 0.8. This strategy is motivated by the

conjecture that the user was comfortable with the previous level and the algorithm

should spend more time at that level. Again, because users would have to be in the

130

inner loop of any sensitivity study, we have chosen the parameters qualitatively

and evaluated the whole system using that choice, as described in Section 4.3.1.

Figure 4.2(b) illustrates the execution of the algorithm for a representative user in

the FIFA game task. Note that UDFS2 settles to a frequency of approximately

1.86GHz, after which little interaction is needed.

4.2. Process-Driven Voltage Scaling
Current DVFS techniques are pessimistic about the processor, which leads

them to often use higher voltages than necessary for stable operation, especially

when they have low temperatures. We elaborate on this pessimism and then

explain our response to it, process-driven voltage scaling (PDVS). PDVS is

evaluated in Section 4.3.2.

4.2.1 Pessimism about the CPU

The minimum stable voltage of a CPU is the supply voltage that guarantees

correct execution for given process variation and environmental conditions. It is

mainly determined by the critical path delay of a circuit. This delay consists of

two components: transistor gate delay and wire delay. Gate delay is inversely

related to the operating voltages used in the critical paths of the circuit.

Furthermore, temperature affects the delay. In current technologies, carrier

mobility in MOS transistors decreases with increasing temperature. This causes the

circuits to slow down with increasing temperature. Wire delay is also temperature-

dependent and increases under higher current/temperature conditions. The

131

maximum operating frequency (Fmax) varies in direct proportion to the sustained

voltage level in the critical timing paths, and inversely with temperature-

dependent RC delay [107].

In addition to the operating conditions, which dynamically change, process

variation has an important impact on the minimum voltage sufficient for stable

operation. Even in identical environments, a variation in timing slack is observed

among the manufactured processors of the same family. As a result, each processor

reacts differently to changes. For example, although two processors can run safely

at 2.8 GHz at the default supply voltage, it is conceivable that these minimum

supply voltages will differ. Customizing voltage choices for individual processors

adapts to, and exploits, these variations. Despite these known effects of process

variation and temperature on minimum stable voltage, DVFS ignores them: for a

given frequency, traditional DVFS schemes use a single voltage level for all the

processors within a family at all times.

The dynamic power consumption of a processor is directly related to

frequency and supply voltage and can be expressed using the formula P=V2CF,

which states that power is equal to the product of voltage squared, capacitance,

and frequency. In addition to its direct impact on the power consumption, reliable

operation at increased frequency demands increased supply voltage, thereby having

an indirect impact on power consumption. Generally, if the frequency is reduced, a

lower voltage is safe.

132

As processors, memories, and application-specific integrated circuits

(ASICs) are pushed to higher performance levels and higher transistor densities,

processor thermal management is quickly becoming a first-order design concern.

The maximum operating temperature of an Intel Pentium Mobile processor has

been specified as 100°C [108, 109]. As a general rule of thumb, the operating

temperature of a processor can vary from 50°C to 90°C during normal operation.

Thus, there is a large difference between normal and worst-case temperatures.

We performed an experiment that reveals the relationship between

operating frequency and minimum stable voltage of the processor at different

temperature ranges. We used Notebook Hardware Control (NHC) [110] to set a

particular Vdd value for each operating frequency supported by the processor.

When a new voltage value is set, NHC runs an extensive CPU stability check.

Upon failure, the system stops responding and computer needs to be rebooted. We

execute a program that causes high CPU utilization and raises the temperature of

the processor. When the temperature reaches a desired range, we perform the CPU

stability check for a particular frequency at a user-defined voltage value.

Table 4-A shows the results of this study for the machine described in

Section 4.0.1. For reference, we also show the nominal core voltage given in the

datasheet [108]. Note that the nominal voltage is the voltage used by all the DVFS

schemes by default. The results reveal that, even at the highest operating

temperature, the minimum stable voltage is far smaller than the nominal voltage.

133

The results also show that at lower operating frequencies, the effect of temperature

on minimum stable voltage is not pronounced. However, temperature change has a

significant impact on minimum stable voltage at higher frequencies. In particular,

at 1.46 GHz, the core voltage value can vary by 5.6% for a temperature change of

30°C. This would reduce dynamic power consumption by 11.4%.

Table 4-A. Minimum stable Vdd for different operating frequencies and temperatures

Stable Vdd (V) at temp ranges (°C) Operating
Freq. (MHz)

Nominal
Voltage (v)

52–57 62–67 72–77 82–87
800 0.988 0.736 0.736 0.736 0.736

1,060 1.068 0.780 0.780 0.780 0.780
1,200 1.100 0.796 0.796 0.796 0.796
1,330 1.132 0.844 0.844 0.860 0.876
1,460 1.180 0.876 0.892 0.908 0.924
1,600 1.260 0.908 0.924 0.924 0.924
1,860 1.324 1.004 1.004 1.020 1.020
2,130 1.404 1.084 1.100 1.116 1.116

As the results shown in Table 4-A illustrate, there is an opportunity for

power reduction if we exploit the relationship between frequency, temperature, and

the minimum stable voltage. The nominal supply voltage specified in the processor

datasheet has a large safety margin over the minimum stable voltages. This is not

surprising: worst-case assumptions were unnecessarily made at a number of design

stages, e.g., about temperature. Conventional DVFS schemes are therefore

pessimistic about particular individual CPUs, often choosing higher voltages than

are needed to operate safely. They also neglect the effect of temperature, losing the

opportunity to save further power.

134

4.2.2 Technique

We have developed a methodology for exploiting the process variation

described in Section 4.2.1 that can be used to make any voltage and frequency

scaling algorithm adapt to individual CPUs and their temperature, thereby

permitting a reduction in power consumption.

Our technique uses offline profiling of the processor to find the minimum

stable voltages for different combinations of temperature and frequency. Online

temperature and frequency monitoring is then used to set the voltage according to

the profile. The offline profiling is virtually identical to that of Section 4.2.1 and

needs to be done only once. Currently, it is implemented as a watchdog timer-

driven script on a modified Knoppix Live CD that writes the profile to a USB

flash drive. To apply our scheme, the temperature is read from the online sensors

that exist in the processor. The frequency, on the other hand, is determined by the

dynamic frequency scaling algorithm in use. By setting the voltage based on the

processor temperature, frequency, and profile, we adapt to the operating

environment. While the frequency can be readily determined (or controlled),

temperature changes dynamically. Hence, the algorithm has built-in filtering and

headroom to account for this fact. Our algorithm behaves conservatively and sets

the voltage such that even if there is a change of 5°C in temperature before the

next reading (one Hertz rate), the processor will continue working correctly.

A reader may at this point be concerned that our reduction of the timing

safety margin from datasheet norms might increase the frequency of timing errors.

135

However, PDVS carefully determines the voltage required for reliable operation for

each processor; that is, it finds the individual processor’s safety margin. Moreover,

it decreases the operating temperature of the processor, which reduces the rates of

lifetime failure processes. If characteristics of processors change as a result of wear,

PDVS can adapt by infrequently, e.g., every six months, repeating the offline

characterization process. To determine processor reliability when using reduced

operating voltage, we ran demanding programs test the stability of different

processor components, e.g., the ALU, at lower voltages. We have set the processor

to work at modified supply voltages as indicated in Table 4-A. The system

remained stable for approximately two months, at which point we terminated

testing. Although observing the stable operation of one machine does not prove

reliability, it is strong evidence.

4.3. Evaluation
We now evaluate UDFS and PDVS in isolation and together. We compare

against the native Windows XP DVFS scheme, displaying reductions in power and

temperature.

Our evaluations are based on user studies, as described in Section and

elaborated upon here. For studies not involving UDFS, we trace the user’s activity

on the system as he uses the applications and monitor the selections DVFS makes

in response. For studies involving UDFS, the UDFS algorithm is used online to

control the clock frequency in response to user button presses. We begin by

describing a user study of UDFS that provides both independent results and traces

136

for later use. Next, we consider PDVS as applied to the Windows DVFS

algorithm. We then consider UDFS with and without PDVS, comparing to

Windows DVFS. Here, we examine both dynamic CPU power (using simulation

driven from the user traces) and system power measurement (again for a system

driven from the user traces). In measurement, we consider not only power

consumption, but also CPU temperature. Finally, we discuss a range of other

aspects of the evaluation of the system.

The following claims are supported by our results:

• UDFS effectively employs user feedback to customize processor frequency to

the individual user. This typically leads to significant power savings compared

to existing dynamic frequency schemes that rely only on CPU utilization as

feedback. The amount of feedback from the user is infrequent, and declines

quickly over time as an application or set of applications is used.

• PDVS can be easily incorporated into any existing DVFS scheme, such as

the default Windows scheme, and leads to dramatic reductions in power use by

lowering voltage levels while maintaining processor stability.

• In most of the cases, the effects of PDVS and UDFS are synergistic: the

power reduction of UDFS+PDVS is more than the sum of its parts.

• Multitasking increases the effectiveness of UDFS+PDVS.

137

• Together and separately, PDVS and UDFS typically decrease CPU

temperature, often by large amounts, increasing both reliability and longevity.

In addition, the effects of PDVS and UDFS on temperature are synergistic.

4.3.1 UDFS

To evaluate the UDFS schemes, we ran a study with 20 users. Experiments

were conducted as described in Section 4.0.1. Each user spent 45 minutes to

- Fill out a questionnaire stating level of experience in the use of PCs,

Windows, Microsoft PowerPoint, music, 3D animation video, and FIFA 2005 (2

minutes) from among the following set: “Power User”, “Typical User”, or

“Beginner”;

- Read a one page handout (2 minutes);

- Acclimate to the performance of our machine by using the above

applications (5 minutes);

- Perform the following tasks for UDFS1: Microsoft PowerPoint plus

music (4 minutes); 3D Shockwave animation (4 minutes); FIFA game (8 minutes);

and

- Perform the same set of tasks for UDFS2.

Each user was instructed to press the F11 key upon discomfort with

application performance. We recorded each such event as well as the CPU

frequency over time.

138

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229
Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

Figure 4.3. Frequency over time for UDFS1 aggregated over 20 users.

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint

139

0

500

1000

1500

2000

2500

1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

0

500

1000

1500

2000

2500

1 26 51 76 101 126 151 176 201 226 251 276 301 326 351 376 401 426 451

Time (seconds)

F
re

q
u

en
cy

Average Maximum Minimum STDEV

Figure 4.4. Frequency over time for UDFS2 aggregated over 20 users.

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint

140

Figure 4.3 and Figure 4.4 illustrate the performance of the two algorithms

in our study. The two columns represent UDFS1 and UDFS2 and the three rows

represent the three applications. Each graph shows, as a function of time, the

minimum, average, maximum, and standard deviation of CPU frequency,

aggregated over our 20 users. Notice that almost all users felt comfortable using

PowerPoint while the processor was running at the lowest frequency. As one might

expect, the average frequency at which users are comfortable is higher for the

Shockwave animation and the FIFA game. There is large variation in acceptable

frequency among the users for the animation and game. Generally, UDFS2

achieves a lower average frequency than UDFS1. For both algorithms it is very

rare to see the processor run at the maximum CPU frequency for these

applications. Even the most sophisticated users were comfortable with running the

tasks with lower frequencies than those selected by the dynamic Windows DVFS

scheme. Sections 4.3.3 and 4.3.4 give detailed, per-user results for UDFS (and

UDFS+PDVS).

4.3.2 PDVS

Using the experimental setup described in Section , we evaluate the effects

of PDVS on the default Windows XP DVFS scheme. In particular, we run the

DVFS scheme, recording frequency, then determine the power saving possible by

setting voltages according to PDVS instead of using the nominal voltages of

DVFS.

141

Table 4-B. Power reduction for Windows DVFS and DVFS+PDVS

Power Reduction (%) over Max Freq. Application

DVFS DVFS+PDVS
PowerPoint + Music 83.08 90.67

3D Shockwave Animation 3.19 40.67
FIFA Game 1.69 39.69

Table 4-B illustrates the average results, comparing stock Windows DVFS

and our DVFS+PDVS scheme. The baseline case in this experiment is running the

system with the highest possible CPU frequency and its corresponding nominal

voltage. The maximum power savings due to dynamic frequency scaling with

nominal voltages are observed for PowerPoint. For this application, the system ran

at the lowest clock frequency most of the time, resulting in a reduction of 83.1%

for the native DVFS scheme. DVFS+PDVS reduces the power consumption by

90.7%. For PowerPoint, adding PDVS to DVFS only reduces power slightly.

For the Shockwave animation and the FIFA game, the power reductions

due to dynamic frequency scaling are negligible because the Windows DVFS

scheme runs the processor at the highest frequency most of the time.

DVFS+PDVS, however, improves the energy consumption of the system by

approximately 40%, compared to the baseline. These results clearly demonstrate

the benefits of process-driven voltage scaling.

4.3.3 UDFS+PDVS (CPU dynamic power, trace-driven simulation)

To integrate UDFS and PDVS, we used the system described in

Section 4.1.2 recording frequency over time. We then combine this frequency

142

information with the offline profile and techniques described in Section 4.1.2

and 4.2.2 to derive CPU power savings for UDFS with nominal voltages,

UDFS+PDVS, and the default Windows XP DVFS strategy. We calculate the

power consumption of the processor. We have also measured online the power

consumption of the overall system, as described in Section 4.3.4.

We conducted a user study (n=20) with exactly the same structure

presented in Section 4.3.1, except that Windows XP DVFS was also considered.

Figure 4.5 presents both individual user results and average results for UDFS1,

UDFS1+PDVS, UDFS2, and UDFS2+PDVS. In each case, power savings over the

default Windows DVFS approach are reported. To interpret the figure, first choose

an application. Next, note the last two bars on the corresponding graph. These

indicate the average performance of UDFS1 and UDFS2, meaning the percentage

reduction in power use compared to Windows DVFS. Each bar is broken into two

components: the performance of the UDFS algorithm without PDVS is the lower

component and the improvement in performance of the algorithm combined with

PDVS is the upper component. The remaining bars on the graph have identical

semantics, but represent user-specific information.

143

-20

-10

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Users

%
 im

p
ro

ve
m

en
t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.99)

(0.99)

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Users

%
 im

p
ro

ve
m

en
t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.89)

(0.94)

-10

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean

Users

%
 im

p
ro

ve
m

en
t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound

(0.96)
(0.97)

Figure 4.5. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP
DVFS (CPU Dynamic Power). Chebyshev bound-based (1-p) values for difference

of means from zero are also shown.

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint

144

For PowerPoint, UDFS1+PDVS and UDFS2+PDVS reduce power

consumption by an average of 56%. The standalone UDFS algorithms reduce it by

an average of 17–19%. User 3 with UDFS2 is anomalous. This user pressed the

feedback button several times and as a result spent most of the time at high

frequencies.

For the Shockwave animation, we see much more mixed responses from the

users, although on average we reduce power by 55.1%. On average, UDFS1 and

UDFS2 independently reduce the power consumption by 15.6% and 32.2%,

respectively. UDFS2 performs better for this application because the users can be

satisfied by ramping up to a higher frequency rather than the maximum frequency

supported by the processor. Note that UDFS1 immediately moves to the maximum

frequency on a button press. User 17 with UDFS1 is anomalous. This user wanted

the system to perform better than the hardware permitted and thus pressed the

button virtually continuously even when it was running at the highest frequency.

Adding PDVS lowers average power consumption even more significantly. On

average, the power is reduced by 49.2% (UDFS1+PDVS) and 61.0%

(UDFS2+PDVS) in the combined scheme.

There is also considerable variation among users for the FIFA game. Using

conventional DVFS, the system always runs at the highest frequency. The UDFS

schemes try to throttle down the frequency over the time. They therefore reduce

the power consumption even in the worst case (0.9% and 2.1% for UDFS1 and

UDFS2, respectively) while achieving better improvement, on average (16.1% and

145

25.5%, respectively). Adding PDVS improves the average power savings to 49.5%

and 56.7% for UDFS1 and UDFS2, respectively. For the Shockwave animation and

the FIFA game, we see a large variation among users, but in all cases the

combination of PDVS and UDFS leads to power savings over Windows DVFS. On

average, in the best case, the power consumption can be reduced by 57.3% over

existing DVFS schemes for all three applications. This improvement is achieved by

combining the UDFS2 (24.9%) and PDVS (32.4%) schemes.

UDFS and PDVS are synergistic. The UDFS algorithms let us dramatically

decrease the average frequency, and PDVS’s benefits increase as the frequency is

lowered. At higher frequencies, the relative change from the nominal voltage to the

minimum stable voltage is lower than that at lower frequencies. In other words,

the power gain from shifting to the minimum stable voltage is higher at the lower

frequencies. However, at higher frequencies, PDVS also gains from the variation in

minimum stable voltage based on temperature as shown in Table 4-A. These two

different advantages of the PDVS result in power improvements at a wide range of

frequencies.

UDFS+PDVS mean results have statistical significance even with weak

bounds. Figure 4.5 shows mean improvements across our 20 users. Normality

assumptions hold neither for the distribution of individual user improvements nor

for the error distribution of the mean. Instead, to discard the null hypothesis, that

our mean improvements for UDFS+PDVS are not different from zero, we have

computed the p value for discarding the null hypothesis using Chebyshev bounds,

146

which are looser but rely on no such assumptions. As can be seen from the figure,

1-p is quite high, indicating that it is extremely unlikely that our mean

improvements are due to chance. We use Chebyshev bounds similarly for other

results. User self-reported level of experience correlates with power improvement.

For example, for FIFA, experienced users expect faster response from the system

causing the system to run at higher frequencies, resulting in smaller power

improvements. Our interpretation is that familiarity increases both expectations

and the rate of user feedback to the control agent, making annoyance with reduced

performance more probable and thus leading to higher frequencies when using the

UDFS algorithms.

Figure 4.6. System Power Measurement Setup

4.3.4 UDFS+PDVS (System power and temperature measurement)

To further measure the impact of our techniques, we replay the traces from

the user study of the previous section on our laptop. The laptop is connected to a

National Instruments 6034E data acquisition board attached to the PCI bus of a

host workstation running Linux, which permits us to measure the power

147

consumption of the entire laptop. The sampling rate is 10Hz. During the

measurements, we have turned off the display of the laptop to make our readings

more comparable to the CPU power consumption results of the previous section.

Ideally, we would have preferred to measure CPU power directly for one-to-one

comparison with results of the previous section, but we do not have the surface

mount rework equipment needed to do so. Figure 4.6 shows the experimental setup

used to measure the actual system power consumption.

4..3.4.1 Power

 Figure 4.7 presents results for UDFS1, UDFS1+PDVS, UDFS2, and

UDFS2+PDVS, showing the power savings over the default Windows DVFS

approach. The Chebyshev bounds indicate that the mean improvements are

extremely unlikely to have occurred by chance. For PowerPoint, UDFS1+PDVS

and UDFS2+PDVS reduce power consumption by averages of 22.6% and 22.7%,

respectively. For the Shockwave animation, although we see much more variation,

UDFS1 and UDFS2 reduce the power consumption by 17.2% and 33.6%,

respectively. Using UDFS together with PDVS lowers average power consumption

by 38.8% and 30.4% with UDFS1 and UDFS2, respectively. The FIFA game also

shows considerable variation among users. On average, we save 15.5% and 29.5%

of the power consumption for UDFS1 and UDFS2, respectively. Adding PDVS

improves the average power savings to 56.8% and 62.9% over Windows DVFS

with UDFS1 and UDFS2, respectively.

148

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t
UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound
(0.99)

(0.99)

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS Chebyshev bound
(0.75)

(0.89)

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Users

%
 im

pr
ov

em
en

t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS Chebyshev bound
(0.89)

(0.94)

Figure 4.7. Comparison of UDFS algorithms, UDFS+PDVS, and Windows XP
DVFS (measured system power with display off). Chebyshev bound-based (1-p)

values for difference of means from zero are also shown.

(c) FIFA Game

(b) 3D Animation

(a) PowerPoint

149

On average, the power consumption of the overall system can be reduced by

49.9% for all three applications. This improvement is achieved by combining the

UDFS2 scheme (22.1%) and PDVS scheme (27.8%).

The results presented in the previous section, and in this section, cannot be

directly compared because the previous section reports the simulated power

consumption of the CPU and this section reports the measured power consumption

of the laptop. However, some conclusions can be drawn from the data in both

sections. For applications like PowerPoint, where the CPU consumes only a small

fraction of the system power, the benefit on system power is low. On the other

hand, for the applications that originally result in high CPU power consumption,

the system power savings can be substantial due to the reduction in dynamic

power as well as the operating temperatures and consequently leakage power.

4.3.5 Temperature

 We used CPUCool [103] to measure CPU temperature in the system.

Figure 4.8 shows the mean and peak temperatures of the system when using the

different combinations of DVFS, PDVS, and UDFS schemes. The values reported

for UDFS and UDFS+PDVS are the averages over 20 users.

150

0

20

40

60

80

100

PowerPoint ShockWave FIFA

T
em

p
er

at
u

re
 [

C
el

si
u

s]

DVFS DVFS+PDVS

(a) Mean Temperature

0

20

40

60

80

100

PowerPoint ShockWave FIFA

T
em

p
er

at
u

re
 [

C
el

si
u

s]

DVFS DVFS+PDVS

(b) Maximum Temperature

Figure 4.8. Mean and peak temperature measurement.

In all cases, the UDFS1 and UDFS2 schemes lower the temperature

compared to the Windows native DVFS scheme due to the power reductions we

have reported in the previous sections. The maximum UDFS temperature

151

reduction is seen in the case of the UDFS2 scheme used for the Shockwave

application (7.0°C). On average, for all 3 applications, the UDFS1 and UDFS2

schemes reduce the mean temperature of the system by 1.8°C and 3.8°C,

respectively. Similarly, PDVS reduces the mean system temperature by 8.7°C on

average for the three applications. The best improvement is observed for the FIFA

game, where temperature decreases by 12.6°C.

The combination of PDVS and UDFS is again synergistic, leading to even

greater temperature reductions than PDVS or UDFS, alone. For the Shockwave

application, UDFS2+PDVS reduces the mean temperature by 19.3°C. The average

temperature reductions in all three applications by the UDFS1+PDVS and

UDFS2+PDVS schemes are 12.7°C and 13.7°C, respectively. Our 13.2°C claim

averages these two.

4.4. Discussion
We now discuss the degree of user interaction needed to make UDFS work,

the CPU reliability and longevity benefits of our techniques, and the effects of

multitasking.

Table 4-C. Average number of user events.

PowerPoint 3D animation FIFA Game Algorithms

4 min 4 min 4 min 4 min
UDFS1 0.35 11.85 5.10 3.42
UDFS2 0.60 14.25 6.50 3.82

152

4..4.1.2 User interaction

 While PDVS can be employed without user interaction, UDFS requires

occasional feedback from the user. Minimizing the required rate of feedback button

presses while maintaining effective control is a central challenge. Our current

UDFS algorithms perform reasonably well in this respect, but could be improved.

Table 4-C presents the average number of annoyance button presses over a 4

minute period for both versions of UDFS algorithms in our 20 user study.

Generally, UDFS2 requires more frequent button presses than UDFS1, because a

single press only increments the frequency. The trade-off is that UDFS1 generally

spends more time at the maximum frequency and thus is more power hungry. On

average, a user pressed a button every 8 minutes for PowerPoint, every 18 seconds

for the Shockwave animation, and every 50 seconds for the FIFA game. During the

course of the study, for the 3D animation, there were some extreme cases in which

the user kept pressing the button even when the processor was running at the

highest frequency. This can be explained by the user’s dissatisfaction with the

original quality of the video or the maximum performance available from the CPU,

over which we had no control. If we omit the three most extreme cases from both

maximum and minimum number of annoyances, on average a user presses the

annoyance button once every 30 seconds for the Shockwave application.

We also note that the system adapts to users quickly, leading to a reduced

rate of button presses. In the Table 4-C, we show both the first and second 4

minute interval for the FIFA game. The number of presses in the second interval

153

is much smaller than the first. Our interpretation is that once a stable frequency

has been determined by the UDFS scheme, it can remain at that frequency for a

long time, without requiring further user interaction.

Table 4-D records the average number of voltage transitions for the six

different schemes used in our study. A voltage transition is caused either due to a

button press or a significant change in operating temperature. For the PowerPoint

application, we observe a reduction in the number of transitions because the spikes

observed for

Table 4-D. Number of voltage transitions

Applications DVFS DVFS+
PDVS UDFS1 UDFS1+

PDVS UDFS2 UDFS2+
PDVS

PowerPoint
+Music 11.00 11.00 4.40 4.65 6.55 6.50

3D
Animation 3.00 4.00 10.30 11.50 16.3 17.55

FIFA Game 6.00 6.00 18.06 18.05 28.85 29.30

DVFS do not occur for UDFS1 and UDFS2. On the other hand, the 3D

animation and FIFA Game applications have more voltage transitions than

observed with Windows native DVFS, because they aim to reduce power by

adjusting throttle and, in effect, voltage. In contrast, conventional DVFS keeps the

system at the highest frequency during the entire interval. The increase in the

number of transitions for the PDVS schemes implemented on top of UDFS are

154

caused by the extra voltage transitions due to changing temperature at a given

frequency level.

4..4.1.3 Reliability and longevity

 In addition to its direct impact on power consumption, our techniques may

ultimately improve the lifetime reliability of a system. Earlier research [111]

showed that the effect of operating temperature on integrated circuit’s mean time

to failure (MTTF) is exponential. As we show in Section 4.3.5 , our schemes can

reduce the operating temperature by 13.2°C on average, thereby potentially

reducing the rate of failure due to temperature-dependant processes such as

electromigration. Traditionally, the required supply voltage of a processor is

reported at the maximum operating temperature of the system. Therefore, at

temperatures below the maximum rated temperature, timing slack exists. As long

as the current temperature is below the highest rated operating temperature, the

operating voltage can be reduced below the rated operating voltage without

reducing reliability below that of the same processor operating at the rated voltage

and at the maximum temperature.

4..4.1.4 Multitasking

 A natural question to ask is whether the extremely simple “press the

button” user feedback mechanism we use in UDFS is sufficient for describing user

preferences in a multitasking environment. To see the effect of UDFS in a

multitasking environment, we conducted a small study (n=8) similar to that of

Section 4.3. Instead of several consecutive tasks, the user was asked to watch a 3D

155

animation using Microsoft Internet Explorer while listening to MP3 music using

Windows Media Player in compact mode with visualization.

Users

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 Mean

%
 im

p
ro

ve
m

en
t

UDFS1 UDFS1+PDVS UDFS2 UDFS2+PDVS

Chebyshev bound

(0.75)

(0.97)

Figure 4.9. Power improvement in the multitasking environment. Chebyshev bound-

based (1-p) values for difference of means from zero are also shown.

Figure 4.9 shows the measured system power improvements compared to

Windows DVFS. On average, the power consumption of the overall system is

reduced by 29.5% and 55.1% for UDFS1 and UDFS2, respectively. Adding PDVS

improves the average power savings to 58.6% and 75.7% for UDFS1 and UDFS2,

respectively. Although these results are preliminary, combined with the results

from the combined PowerPoint+MP3 task described in Section 4.0.1, they suggest

that the simple feedback mechanism is sufficient in a multitasking environment. It

is clearly a better proxy of the user’s satisfaction than the CPU utilization of the

combined task pool.

4.5. Related Work
Dynamic voltage and frequency scaling (DVFS) is an effective technique for

microprocessor energy and power control for most modern processors [112, 113].

156

Energy efficiency has been a major concern for mobile computers. Fei et al. [114]

proposed an energy aware dynamic software management framework that

improves battery utilization for mobile computers. However, this technique is only

applicable to highly adaptive mobile applications. Researchers have proposed

algorithms based on workload decomposition [115], but these tend to provide

power improvements only for memory-bound applications. Wu et al. [116]

presented a design framework of a run-time DVFS optimizer in a general dynamic

compilation system. The Razor [117] architecture dynamically finds the minimal

reliable voltage level. Dhar et al. [118] proposed adaptive voltage scaling that uses

a closed-loop controller targeted towards standard-cell ASICs. These schemes are

similar to the PDVS scheme. However, our approach is completely operating

system controlled and does not require any architectural modifications and

therefore incurs no hardware overhead. Intel Foxton technology [119] provides a

mechanism for select Intel Itanium 2 processors to adjust core frequency during

operation to boost application performance. However, unlike PDVS it does not

perform any dynamic voltage setting.

Other DVFS algorithms use task information, such as measuring response

times in interactive applications [120, 121] as a proxy for the user. Unlike

Vertigo [122], we monitor the user instead of the application. Xu et al. proposed

novel schemes [123] minimizing energy consumption in real-time embedded systems

that execute variable workloads. However, they try to adapt to the variability of

the workload rather than to the users. AutoDVS [124] is a dynamic voltage scaling

157

(DVS) system for hand-held devices. They used user activity as an indicator to

detect computationally intensive CPU intervals and use that to drive DVS. In

contrast, UDFS uses user activity to directly control the frequency of the system.

Ranga et al. proposed energy-aware user interfaces [125] based on usage scenarios,

but they concentrated on the display rather than the CPU. Gupta et al. [100] and

Lin et al. [101] demonstrated a high variation in user tolerance for performance in

the scheduling context, variation that we believe holds for power management as

well. Anand et al. [126] discussed the concept of a control parameter that could be

used by the user. However, they focus on the wireless networking domain, not the

CPU. Second, they do not propose or evaluate a user interface or direct user

feedback. To the best of our knowledge, the UDFS component of our work is the

first to employ direct user feedback instead of a proxy for the user.

Dynamic thermal management is an important issue for modern

microprocessors due to the high cost of cooling solutions. Previous work has

discussed microarchitectural modeling and optimization based on

temperature [127-130]. Liu and Svensson made a trade-off between speed and

supply voltage [130]. Brooks and Martonosi [131] proposed dynamic thermal

management for high-performance processors. For portable computers,

Transmeta’s Crusoe [132] and Intel’s Pentium-M [113] are notable commercial

products that uses innovative dynamic thermal management. To the best of our

knowledge, the PDVS component of our work is the first to consider exploiting

158

process variation via per-CPU customization using profiling. In addition, it is the

first scheme to consider temperature in voltage level decisions.

4.6. Conclusion
We have identified processor and user pessimism as key factors holding

back effective power management for processors with support for DVFS. In

response, we have developed and evaluated the following new, process- and user-

adaptive DVFS techniques: process-driven voltage scaling (PDVS) and user-driven

frequency scaling (UDFS). These techniques dramatically reduce CPU power

consumption in comparison with existing DVFS techniques. Extensive user studies

show that we can reduce power on average by over 50% for single task and over

75% for multitasking workloads compared to the Microsoft Windows XP DVFS

scheme. Furthermore, CPU temperatures can be markedly decreased through the

use of our techniques. PDVS can be readily used along with any existing frequency

scaling approach. UDFS requires that user feedback be used to direct processor

voltage and frequency control. PDVS and UDFS are synergistic. UDFS leads to

lower average frequencies and PDVS allows great decreases in voltage at low

frequencies.

159

CHAPTER 5

USER-PERCEIVED PERFORMANCE EVALUATION

Existing architectures/systems typically aim at optimizing for user

satisfaction by employing metrics based largely on instruction throughput (e.g.,

instructions-per-second). These metrics are used because they are easy to access,

easy to compare across platforms, and are believed to reflect user demands for

performance at a very low level. However, in this chapter, we will show that low-

level information is not as good a proxy for user satisfaction with performance as is

high-level information actually observed or perceived by the user. We focus on

interactive applications and show that it is possible to infer information about

user-perceived performance by measuring changes at the user interface. This

provides better information about the performance level necessary to maintain user

satisfaction and therefore can be used to achieve a reduction in power

consumption, a reduction in heat generation, and an increase in lifetime reliability.

Processor frequency has a strong effect on power consumption and

temperature, directly and also indirectly through the need for higher voltages at

higher frequencies. Therefore, Dynamic Voltage and Frequency Scaling (DVFS) is

one of the most commonly used power reduction techniques in modern processors.

160

DVFS varies the frequency and voltage of a microprocessor at runtime according

to processing needs. Although there are many different versions of DVFS, at its

core DVFS adapts power consumption and performance to the current workload of

the CPU. Specifically, existing DVFS techniques in high-performance processors

select an operating point (CPU frequency and voltage) based on the utilization of

the processor and other information available to the Operating System (OS)

kernel. This approach is pessimistic regarding user satisfaction and assumes that

the maximum processor frequency is necessary for every process. A high level of

CPU utilization or a burst of certain OS events leads directly to a high frequency

(and hence high voltage), regardless of the user’s satisfaction or expectation of

performance. This can produce unnecessary increases in frequency, voltage, power,

and temperature.

In response to this observation, discussed further in Section 5.1, we have

developed a new power management technique that relies upon a more accurate

proxy for user performance needs than CPU- or OS-level events, but is still

inexpensive to measure. We propose to determine user satisfaction with processor

performance not with information that is “close to metal” and hidden from the

user, but rather with information that is “close to flesh” and apparent to the user.

Interface devices are the logical locations for these measurements since they sit

between computation and user perception. The display is particularly useful

because it is the user’s primary source of information regarding the performance of

the computer.

161

We must note that a user-satisfaction aware optimization metric does not

have to provide absolute values, but relative values are sufficient. In other words,

we do not need an exact measure of user-perceived performance to make decisions.

For example, consider an application, such as video playback, that only affects the

screen. If there are two settings on the architecture that result in identical

sequences and timing of frames on the screen, then we can safely conclude that

these two states have the same performance. Using this idea in the context of

DVFS, we can compare application performance (i.e., user-perceived performance

based on changes in the display) to the performance measured using the same

metric at the highest available frequency. Hence, we only need to make relative

measurements to determine user satisfaction.

To bring this idea to life and evaluate it, we have developed a new power

management framework called PICSEL (Perception-Informed CPU performance

Scaling to Extend battery Life) that monitors the rate of change of pixel

intensities in the display. An algorithm controlling the processor’s operating

frequency then makes decisions based upon these rates of change. The algorithm is

tested with two configurations: conservative PICSEL (cPICSEL) and aggressive

PICSEL (aPICSEL) (Section 5.2.2). We focus on the DVFS technique

implemented by a commercial OS and show that runtime information on user-

perceived performance can enhance the effectiveness of the power management

scheme. We also show that this approach (i.e., considering user satisfaction while

taking architectural decisions) can result in optimizations that are not possible

162

otherwise. This is a collaborative work with my colleague Jack Cosgrove who is a

graduate student interested in correlating user satisfaction with computer display.

Specifically, this work makes the following contributions:

• We show that traditional performance metrics do not necessarily represent

user-perceived performance,

• We introduce new metrics that can successfully measure user-perceived

performance, and

• We propose, implement, and evaluate PICSEL, a power management scheme

that utilizes user-perceived performance.

The chapter is organized as follows. In Section 5.1, we describe the

motivational results showing the difference between instruction-throughput and

user-perceived performance. PICSEL is described in Section 5.2. Section 5.3

presents the results obtained from user studies. We compare our work with

previous studies in Section 5.4. Section 5.5 summarizes our contributions.

5.1. User-Perceived Performance
The motivation for including user-perceived performance in any objective

function is clear: any optimization (performance, power, reliability, security, etc.)

ultimately aims to satisfy the user. However, the difficulty in optimizing directly

for user-perceived performance is finding a metric that corresponds to it. For

interactive applications, the events occurring on the input/output devices are good

candidates for measuring what the user observes. However, input events are rare

163

compared to output events. Therefore, considering output to the user is preferable

for estimating the performance experienced by the user. Of all the types of output

supplied to the user, graphics are used in the highest proportion of applications.

Therefore, utilizing properties of the display to measure user-perceived

performance is a good alternative.

Given an application that only changes the display, it is safe to assume that

the sequence of frames is an indication of the user-perceived performance. For

example, if there are two architectural alternatives that result in identical frame

timings and sequences, we can conclude that these architectures provide the same

user-perceived performance. On the other hand, what happens if the sequences are

different? One alternative would be to consider frame rate. For example, if the

frame rate is decreased by 10%, then we may claim that the user-perceived

performance is reduced by 10%. However, the correlation between frame rate and

user satisfaction may be weak. In fact, Ghinea and Thomas [133] have done a

perceptual study showing that neither frame rate nor color depth are significant

predictors of user satisfaction, but the combination of these two entities strongly

correlates to the user satisfaction. However, extracting the exact frame rate and

color depth information would require changes in the application and/or OS.

Hence, we decided to utilize a metric that is independent of the application and

easily measurable: we measure the rate of display pixel change over time, which

captures the combination of these two metrics.

164

It is important to note that measuring our metric, pixel rate change, has

comparable complexity to measuring existing metrics such as CPU utilization that

are commonplace in today’s architectures. In addition, the link between user

satisfaction and changes on the display is supported by prior work [133], as well as

intuition.

Traditionally, the rate of instruction execution has been widely used as a

measure of system performance. First, we perform a set of experiments measuring

the instruction throughput and the rate of pixel change to understand the relation

between these two metrics. In these experiments, we measure the number of

instructions-per-second (IPS) on a 2.13 GHz Intel Pentium M-based laptop (please

see Section 5.3 for further details on the experimental study environment) for three

applications: a 3D Shockwave animation, a DVD quality video played, and a 3D

video game. We also measured the changes in intensity in the red, green, and blue

channels of some of the pixels being used to display these applications using the

method described in Section 5.2.3, and averaged these changes together for each

time instance to obtain the Average Pixel Change (APC). The procedure to

calculate APC is presented in Table 5-A. We repeat these measurements at all six

available processor operating frequencies.

165

0.4

0.5

0.6

0.7

0.8

0.9

1

2.13 1.8 1.6 1.3 1 0.8
CPU Frequency [GHz]

Re
la

tiv
e

Ch
an

ge
s

Game (APC) Game (IPS)
3D Anim (APC) 3D Anim (IPS)
Video (APC) Video (IPS)

Figure 5.1. IPS and APC curve

Table 5-A. User-Perceived Performance Metrics

Metrics Measurement Procedure

Average Pixel Change
(APC)

- Capture the Pixel intensities of the RGB
channels of all the pixels in a memory buffer
- Calculate the relative changes for all the

sampled pixels
- The mean of relative changes is the APC

Rate of Average Pixel
Change (APR) (APCTi – APCTi-1)/(Ti - Ti-1)

Figure 5.1 illustrates the results of this experiment, with the solid lines

representing the APC and dotted lines representing the IPS. As depicted in the

figure, the IPS of a system is closely related to the operating frequency and is

fairly uniform across the three applications. APC is also dependent on the

operating frequency, but this dependence is influenced by the application more so

than IPS. For the Shockwave application, the effect on APC due to frequency

throttling is below 10% for the highest three frequencies. The Video application

166

shows similar properties. For this task, we could simply set the frequency statically

to a lower value without causing noticeable change in the APC. For the game

application, the highest two frequency states can sustain the APC value within the

10% threshold. However, the lower frequency states cause the APC value to drop

suddenly. Most importantly, we see a significant difference between the reduction

in IPS and APC. In other words, these results support our claim that the

instruction throughput and user-perceived performance are not linearly related.

We observe that the APC value of a system can quantize user perceived

performance and can be used as a control parameter for a power management

scheme that implements DVFS based on user-perceived performance.

The primary metric we use for user-perceived performance is APC

normalized to the total number of pixels in the display. As shown in the Figure

5.1, we observe considerable variation in the APC values across different

applications as well as different frequency states. On the other hand, it is also

possible that the reduction in the frequency may result in discontinuities in the

display. Previous researchers [134] have found that jitter and latency are the main

sources of user discontent in networked multimedia applications. For example,

consider an application that starts skipping frames when the computational power

is reduced. In such a case, the APC may not be affected significantly: in a

sequence of frames, even if some of the intermediate ones are skipped, the pixel

difference between the first and the last does not change. To capture the

occurrences of such discontinuities, we record the Rate of Average Pixel

167

Change (APR) normalized over the number of pixels. In other words, we

calculate the difference between the APC values measured at each time instant.

This roughly corresponds to the derivative of the APC. Figure 5.2 illustrates the

APR trends observed in three applications used in this research project. When

there are glitches during display, in general the APR value increases rapidly. This

is true for applications where the glitch problem is observed at the lower

frequencies, namely the Video and 3D Shockwave animation. For other

applications (such as the game), we simply observe an overall slowdown and APR

values drop in parallel to APC levels. This reduces game jitter at the price of

slowing the entire game down. As a result, for this particular application we

actually observe a reduction in APR value at lower frequencies as the game’s

average frame rate is reduced.

0.4

0.8

1.2

1.6

2

2.4

2.13 1.8 1.6 1.3 1 0.8

CPU Frequency [GHz]

Re
la

tiv
e

Ch
an

ge
s

Game (APR)

3D Anim (APR)

Video (APR)

Figure 5.2. APR curves for the three applications

168

The APR reveals even more pronounced differential behavior. This behavior

can permit a DVFS algorithm to differentiate between two applications with

similar computational loads and to assign them to different operating frequencies,

one potentially lower than would have otherwise been assigned by existing

pessimistic DVFS schemes.

5.2. PICSEL Framework
User-perceived performance-based frequency scaling has two components.

First, we have to measure the rate of change in the pixels displayed on the screen.

This measurement tool is described in the next section. Then, we have to make a

throttling decision based on these measurements. The algorithm making this

decision is described in Section 5.2.2. In Section 5.2.3, we describe how PICSEL

interacts with the system.

5.2.1 PICSEL Display Access

There are several methods for accessing the content of a computer display

owing to the many steps involved in generating this content. Although more

complex schemes are possible, the organization of a generic graphics pipeline in a

contemporary computer is shown in Figure 5.3.

169

Figure 5.3. Graphics pipeline in a modern PC

Application content is read and produced by the CPU, which determines

what action should be taken by the video card. The video card then performs

operations on the data stream sent by the CPU. The most common operations are

blitting, rendering, and decoding. Blitting is a method to erase and redraw sections

of a bitmapped image more quickly than a raster scan. Rendering uses highly

parallel floating-point processors to display three-dimensional primitives as two-

dimensional projections. Video cards can also perform hardware-accelerated

decoding of such compression algorithms as MPEG-2. Each of these different

methods may use separate portions of video memory that are invisible to each

other until composition on the frame buffer. The frame buffer consists of at least

two video memory buffers each as large as the monitor screen upon which the

separate video buffers are pieced together through a process called composition.

PICSEL gathers screen information using the Windows XP screenshot

method, which is simple to implement and can blit any region of the screen to

main memory. However, screen content may be missing from sections of the blitted

Frame BufferBlitting

Rendering

Decoding

CPU

Main
Memory

Video Card

170

region if those sections were drawn elsewhere in video memory by a rendering or

decoding operation. Such a sub-section of video memory stored outside the full

screen video memory and later composited within a window is called a hardware

overlay. Screen data from a hardware overlay can be obtained, however, by

turning off the hardware overlay option in the application owning the overlay. The

lack of hardware overlays does not degrade performance during testing. It should

also be noted that the blitting method will be less available in the future as

desktop environments move towards full rendering, e.g., Quartz on Macintosh,

Aero on Windows, and Compiz Fusion on the X Server.

Ideally we would like to consider all the pixels present in the display while

calculating the APC. Furthermore, the rate of APC calculation should be same as

rate of frame change in the system. However, both of these constraints introduce

heavy computational overhead on the system. Therefore, it is necessary to reduce

the size of the captured screen area so that the capturing process does not occupy

too much of the computer’s resources (we decided to limit the overhead to less

than 2% CPU utilization). The final captured area is 64 by 51 pixels, or a scaling

down of each dimension of a 1280 by 1024 screen by a factor of twenty. This block

contained 3276 pixels and was fixed at the center of the screen. Moreover the

sampling frequency for calculating APC is set to 10 Hz. Increasing the sampling

frequency further increases the computational overhead. As we will show in

Section 5.3, for our target applications, these limitations do not prevent PICSEL

from capturing the user-perceived performance. Nevertheless, it is possible that

171

applications will not use our focus area; hence it may be desirable to overcome

these limitations for other application domains. There are two design alternatives

to solve this problem. First, the PICSEL algorithm can be implemented in

hardware (either the CPU or the graphics card). The simplicity of the algorithm

ensures relatively easy implementation in actual hardware at low overhead.

Second, PICSEL could be executed on the graphics hardware. Although such

implementations would be desirable, our goal in this work is to provide a proof-of-

concept, which is achieved with the current implementation of PICSEL.

After a section of the screen has been captured, it is stored to a memory

buffer. This buffer is compared to another buffer containing the previous screen

capture, and the magnitudes of the intensity differences for the red, green, and

blue channels are calculated. Only two buffers are necessary, with each buffer

toggling between old and new screen captures. All of the magnitude differences are

summed together to obtain a single statistic describing the first time derivative of

pixel intensity over the sampling period (APC).

It is important to understand that this method does not capture each

frame. However, since we also measure the APR, the difference between the frame

rate and the sampling rate does not prevent us from capturing any slowdown

because the jitter of pixel intensities will be captured with the APR metric. It is

this second time derivative that permits a sampling frequency below the frame rate

of the screen.

172

5.2.2 PICSEL Algorithm

PICSEL decides on the frequency level by using three state variables: f, the

current CPU frequency; µAPC, APC in the last time interval; and µAPR, APR in the

last time interval. Pixel data are measured at fixed sampling frequency and stored

to a file by a background process. Adaptation is controlled by three constant

parameters: �ρ, the APC change threshold; γ, ���the APR change threshold; and α�, the

threshold difficulty level corresponding to each frequency state. PICSEL can either

be in the initialization or the control state. The idea in the initialization stage is to

capture information about the APC and APR values observed at the highest

frequency. These values will be compared against during the control stage to make

throttling decisions. Therefore, during initialization, the CPU frequency is set at

the highest value fmax for a time interval Tinit. The APC and APR values of the

system over the time interval Tinit are obtained from the background process and

initialized as APCglobal and APRglobal. PICSEL then enters the control state where

at the end of each time interval Ti, the APC and APR of the system over the last

interval is obtained from the background process. PICSEL then makes a decision

as follows:

If µAPC < (1-ρ*(1-α))*APCglobal or
 µAPR < (1-γ*(1-α))*APRglobal
{

Reduce f by one level;
Reset α of the last level to 0;

}
Else {

Increase f by one level;
Increment α;

}

173

The main idea in this code is to compare the last observed APC and APR

against the “global” APC and APR (i.e., APC and APR captured when the

processor is executing at the highest frequency). Then, based on the threshold

factors defined by ����� and �� we conclude that the user-perceived performance is

unchanged and try to reduce the frequency and subsequently power consumption.

Otherwise, out of bound values of �APC and �APR suggest that user-perceived

performance has suffered on the last interval due to low CPU frequency and it is

increased accordingly to improve the user-perceived performance.

The goal of the factor ��is to eliminate the possible ping-pong effect between

two frequency states. If the processor has been at a state several times after which

PICSEL had to increase the frequency, ��makes it harder to go down to that

frequency level. Following every third (n=3) update to �, PICSEL reenters the

initialization state. This feature of the algorithm ensures that PICSEL can adjust

to a set of operating conditions very different from those present at initialization

but at a rate that is maximally bounded by n and Ti. The constant parameters (Ti

= 7 seconds, Tinit = 10 seconds) were set based on the experience of the authors

using the system. α is initialized to zero for each of the frequency level and is

incremented by 0.1 for each frequency boost. We used two variations of the

PICSEL algorithm by fixing the ������������������and ������������������ which correspond to conservative

PICSEL (cPICSEL) and aggressive PICSEL (aPICSEL), respectively.

Ideally, we would like to empirically evaluate the sensitivity of PICSEL

performance to these parameters. However, it is important to note that any such

174

study would require having real users in the loop, and thus would be quite slow.

Testing three values of five parameters on 20 users would require 243 days (based

on 20 users/day and 25 minutes/user). For this reason, we decided to choose the

parameters based on qualitative evaluation by the authors and then “close the

loop” by evaluating the whole system with the choices.

5.2.3 Implementation/Integration of PICSEL

Currently, we have not integrated PICSEL with the OS, rather for our user

studies, we manually give control to PICSEL. Once PICSEL is active, it executes

client software that runs as a Windows toolbar task as well as an API that

controls CPU frequency based on user perceived performance. In the client, we log

the APC and APR at the background. The API uses these values to control CPU

frequency. It is this implementation that we evaluate in the next section.

In its current implementation, PICSEL has some limitations, which will be

handled once it is integrated with the OS. Particularly, PICSEL should be

activated only if the system is executing an interactive application. Hence, we first

have to deal with detecting interactive applications, which will be handled through

constant (but infrequent) monitoring of the device. For example, a daemon can

monitor the APC/APR values every 10 seconds. Then, if this rate is above a

threshold, we conclude that the current foreground application is an interactive

one and activate the PICSEL frequency control. If the APC/APR value drops

below a threshold, PICSEL will conclude that the interactive application is

completed and give the control back to the Windows DVFS. In scenarios when the

175

display is static, PICSEL will detect that the rate of change in the display is below

the threshold and give the control back to the Windows DVFS. On the other

hand, if the machine runs a screen saver that causes significant changes on the

screen, PICSEL will control the frequency. In such a case, the frequency will be

reduced if there is no background job (and hence the reduction in the frequency

does not cause a significant change on APC/APR), but will keep it high if a

background job keeps the CPU busy (hence a change in the frequency will cause a

significant change in APC/APR).

We must note that running background jobs does not cause any problem for

PICSEL. In fact, one of our applications targeted in the next section includes a

non-interactive background job to prove that our concept is applicable in such

cases. If there is a CPU-intensive background job, a reduction in the frequency

causes a significant reduction in the APC (even if the interactive application itself

is not compute intensive). Therefore, PICSEL will keep the frequency high. If, on

the other hand, the background job is not CPU-intensive, the frequency can be

safely reduced, which is exactly the action taken by PICSEL.

5.3. Evaluation
We now evaluate cPICSEL and aPICSEL schemes. We compare against the

native Windows XP DVFS scheme, displaying reductions in power and

temperature. In Section 5.3.7, we also present the results summarizing the user

satisfaction.

176

Our evaluations are based on user studies, as described in Section 5.3.1. We

trace the user’s activity on the system during the use of the applications and

monitor the selections Windows DVFS, cPICSEL, or aPICSEL makes in response.

For studies involving PICSEL, the cPICSEL and aPICSEL algorithms are used

online to control the clock frequency in response to APC and APR values. In the

rest of this section, we first describe a user study of PICSEL that provides both

independent results and traces for later use. Next, we examine dynamic CPU

power consumption, system power measurements (for a system driven from the

user traces), and temperature measurements.

PICSEL effectively employs user-perceived performance via APC and APR

values and customizes processor frequency to the individual user. This typically

leads to significant power savings compared to existing dynamic frequency schemes

that rely only on CPU utilization as feedback. The frame buffer readings and the

corresponding calculations for measuring user-perceived performance are

infrequent, and generally results less than 2% computational overhead. We must

note that PICSEL performs the APC and APR readings during user studies, hence

all the results presented for the PICSEL (including power and user satisfaction)

include this overhead. We would also like to point that a more efficient

implementation or hardware support from the graphical interface would minimize

this overhead and would increase the benefits observed from PICSEL even further.

177

5.3.1 Experimental Setup

Our experiments were done using an IBM Thinkpad T43p with a 2.13 GHz

Pentium M-770 CPU and 1 GB memory running Microsoft Windows XP

Professional SP2. The Pentium M uses the second generation of Intel’s SpeedStep

technology, in which six CPU frequency-voltage operating points are available.

In all the studies, we make use of three application tasks, some of which are

CPU intensive and some of which frequently block while waiting for user input:

• Watching a 3D Shockwave animation using the Microsoft Internet Explorer

web browser. The animation was stored locally. Shockwave options were

configured so that rendering was done entirely in software on the CPU.

• Playing the FIFA 2005 Soccer game. FIFA 2005 is a popular sports game.

The game was stored locally. There were no constraints on user gameplay.

• Watching an HD quality movie trailer in Windows Media Player (WMP)

while decoding another MPEG movie clip in the background. Both clips were

stored locally and decoding was done in software on the CPU.

We conducted a study with twenty users to evaluate the PICSEL schemes.

We developed a user pool by advertising our studies within a private university.

Some participating users were graduate students and some others were less

experienced with computer use. The studies were double-blind and randomized

(i.e., the order of schemes during the tests were randomized to eliminate any

possible effect of “first-time” execution impact). The studies included intervention

178

by proctors between trials. Each user evaluation lasted about thirty minutes, and

consisted of the user doing the following:

• Filling out a questionnaire that asked the user to rate his or her level of

experience in the use of PCs, Windows XP, DVD video, 3D animation, and

FIFA 2005

• Listening to an explanation of how to play FIFA 2005 and how to rate his or

her satisfaction with each application instance

• Watching the 3D Shockwave animation using cPICSEL, aPICSEL, and

Windows DVFS (2 minutes each)

• Playing FIFA 2005 using cPICSEL, aPICSEL, and Windows DVFS (3.5

minutes each)

• Watching the movie trailer using cPICSEL, aPICSEL, and Windows DVFS

(2 minutes each).

After each application, the users were instructed to assign one of five levels

of satisfaction to their experiences with the system performance for each instance

of an application. In other words, the users were not asked to rank the instances

against each other.

5.3.2 Frequency Results

Figure 5.4 illustrates the performance of the two algorithms for three

applications in our study. Each graph shows, as a function of time, the CPU

179

frequency for a randomly selected user (other users show the same trends although

the exact values may be different). Notice that in all the applications, both

versions of PICSEL were able to throttle down the processor as compared to the

Windows DVFS scheme. The amount of frequency reduction varies from

application to application. PICSEL is most effective for the 3D animation

application. As illustrated in Figure 5.1and Figure 5.2, the 3D animation has least

variation in APC and APR values at lower frequencies. As a result the PICSEL

algorithm could reduce the CPU frequency to the lower states without affecting

the user-perceived performance. The video application follows a similar trend. For

the game, we observe little throttling. This is also expected as the APC values in

Figure 5.1 degrade very quickly for the game. However, PICSEL algorithm can

throttle down the frequency to lower frequency states in few cases. Overall, these

results show that PICSEL can successfully adjust the throttling according to the

user-perceived performance. Particularly, for a highly compute-intensive

application (such as the game), the reduction in the frequency remains minimal.

For other applications, the frequency can be reduced without affecting the user-

perceived performance. In Section 5.3.7, we also analyze the user satisfaction with

the default Windows DVFS (which almost always uses the highest frequency) and

PICSEL algorithms and show that the user happiness is not adversely affected for

any of our target applications.

180

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

CP
U

Fr
eq

ue
nc

y
[G

Hz
]

Time [sec]

DVFS cPICSEL aPICSEL

(a) 3D Shockwave animation

0

0.5

1

1.5

2

2.5

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

CP
U

Fr
eq

ue
nc

y
[G

Hz
]

Time [sec]

DVFS cPICSEL aPICSEL

(b) Video

0

0.5

1

1.5

2

2.5

0 14 28 42 56 70 84 98 112 126 140 154 168 182 196 210

CP
U

Fr
eq

ue
nc

y
[G

Hz
]

Time [sec]

DVFS cPICSEL aPICSEL

(c) FIFA game

Figure 5.4. Frequency state diagram

181

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

ea
n

Po
we

r I
m

pr
ov

em
en

t [
%]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

ea
n

Po
we

r I
m

pr
ov

em
en

t [
%]

Users

cPICSEL aPICSEL

(b) Video

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

ea
n

Po
we

r I
m

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(c) FIFA game

Figure 5.5. The CPU dynamic power reduction with cPICSEL and aPICSEL over
Windows DVFS

182

5.3.3 Power Measurements

To analyze the effect of cPICSEL and aPICSEL on the power consumption

of the system, we logged the frequency over time during the user studies described

in the previous section. We then combine this frequency information with the

offline profile and techniques described in Section 5.3.1 to derive CPU power

savings for cPICSEL, aPICSEL, and the default Windows XP DVFS strategy. We

have also measured the power consumption of the overall system, as described in

Section 5.3.5.

5.3.4 CPU Dynamic Power Reduction

The dynamic power consumption of a processor is directly related to its

frequency and supply voltage and can be expressed using the formula P = V2CF,

which states that power is equal to the product of voltage squared, capacitance,

and frequency. By using the frequency traces and the nominal voltage levels on our

target processor [113], we calculated the relative dynamic power consumption.

Figure 5.5 presents the CPU dynamic power reduction achieved by the PICSEL

algorithms (cPICSEL and aPICSEL) for individual users. The rightmost bars

correspond to the savings averaged across users.

For the 3D Shockwave animation, we see mixed responses from the users,

although on average we reduce power by 21.8%. On average, cPICSEL and

aPICSEL independently reduce the power consumption by 15.3% and 28.2%,

respectively. aPICSEL performs better as it allows a larger threshold for APC

values over each interval. The results show a considerable variation among

183

different users. This can be explained by the fact that the control agent for APC

calculation considers a sampling window of roughly 64x51 pixels at the center of

the display window. The relative position of the shockwave player while the user

watches the 3D animation plays a role in the calculation of APC and APR. It

subsequently affects the decision taken by the PICSEL algorithm.

For Video, cPICSEL and aPICSEL reduce power consumption by an

average of 9.6% and 19.7%, respectively. This suggests that the Video application

is more sensitive to the frequency throttling. User 19 is the only exception where

aPICSEL results a power savings of 45.8%. There is also considerable variation

among users for the FIFA game. Using conventional DVFS, the system always

runs at the highest frequency. The PICSEL schemes try to throttle down the

frequency over time. They therefore reduce the power consumption while achieving

reduction in power, on average 2.6% and 6.7% for cPICSEL and aPICSEL,

respectively. Note that PICSEL does not reduce the frequency for all the users.

For example, cPICSEL does not reduce the frequency for user 19. Similarly,

aPICSEL does not reduce the frequency for user 17. This is expected as for the

game application for which the slope for the APC curve (Figure 5.1) is most steep

and for these users the change in APC and APR never satisfied the threshold

condition for frequency reduction.

For all three applications, we see a large variation among users, but in all

cases cPICSEL and aPICSEL lead to power savings over Windows DVFS. On

average, aPICSEL reduces the dynamic power consumption by 18.2% for all three

184

applications. The cPICSEL scheme results a 9.1% power reduction aggregated over

three applications and 20 users.

Figure 5.6. System power measurement setup

5.3.5 System power measurement

To further measure the impact of our techniques, we replay the traces from

the user studies described in Section 5.3.1 on the laptop platform. The laptop is

connected to a National Instruments 6034E data acquisition board attached to the

PCI bus of a host workstation running Windows (and the target applications),

which permits us to measure the power consumption of the entire laptop

(including other power consuming components such as memory, screen, hard disk,

etc.). The sampling rate is set to 10 Hz. Figure 5.6 illustrates the experimental

setup used to measure the system power.

185

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Po
we

r I
m

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Po
we

r I
m

pr
ov

em
en

t [
%]

Users

cPICSEL aPICSEL

(b) Video

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Po
we

r I
m

pr
ov

em
en

t [
%

]

Users

cPICSEL aPICSEL

(c) FIFA game

Figure 5.7. The system power reduction with cPICSEL and aPICSEL over
Windows DVFS

186

Figure 5.7 presents the system-level power savings over the default

Windows DVFS for cPICSEL and aPICSEL schemes. In general, we see that the

power savings of the system exhibits the same trends observed for dynamic power

savings. For 3D Shockwave animation, cPICSEL and aPICSEL reduce power

consumption by 16.8% and 25.7% on average, respectively. cPICSEL and

aPICSEL reduce the power consumption by 8.0% and 14.5%, respectively for

Video. For both the 3D animation and the Video, we see large variation among

users. The FIFA game shows less variation among users. The high CPU overhead

of this application restricts the PICSEL algorithms to throttle down the frequency.

On average, we save 2.6% and 6.2% of the power consumption for cPICSEL and

aPICSEL, respectively.

On average, the power consumption of the overall system can be reduced by

12.1% for all three applications. This improvement is achieved by the aPICSEL

scheme. The cPICSEL scheme reduces the system power consumption by 7.1%,

aggregated over 20 users and three applications. We must note that the dynamic

CPU power savings presented in the previous section and the system power

savings presented in this section cannot be directly compared because the previous

section reports the dynamic power consumption of the CPU. This section, on the

other hand, reports the measured power consumption of the laptop (which includes

leakage power of the CPU as well as all the power consumption of other

components in the laptop including memory, screen, hard disk, etc.). However,

some conclusions can be drawn from the data in both sections. Applications that

187

originally result in high CPU power consumption tends to also observe high system

power savings. Clearly, part of system power reduction comes from the decrease in

the dynamic power consumption, but also the leakage is reduced when dynamic

power consumption decreases (and hence temperature drops down).

5.3.6 Changes in Peak Temperature

 We used CPUCool [135] to measure CPU temperature in the system.

Figure 5.8 shows the reductions in peak temperatures of the system when using the

cPICSEL and aPICSEL schemes.

In all cases, the cPICSEL and aPICSEL schemes lower the temperature

compared to the Windows native DVFS scheme due to the power reductions we

have reported in the previous sections. The maximum temperature reduction is

seen in the case of the aPICSEL scheme used for the Shockwave application

(16°C). On average, for all three applications, the cPICSEL and aPICSEL schemes

reduce the peak temperature of the system by 1.7 °C and 4.3°C, respectively,

aggregated over all 20 users.

188

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n
[°C

]

Users

cPICSEL aPICSEL

(a) 3D Shockwave animation

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n
[°C

]

Users

cPICSEL aPICSEL

(b) Video

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
ea

n

Te
m

pe
ra

tu
re

 R
ed

uc
tio

n
[°C

]

Users

cPICSEL aPICSEL

(d) FIFA game

Figure 5.8. Peak temperature reduction.

189

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 M
…

Ra
nk

in
g

Users

DVFS cPICSEL aPICSEL

(a) 3D Shockwave animation

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

ea
n

Ra
nk

in
g

Users

DVFS cPICSEL aPICSEL

(b) Video

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M

ea
n

Ra
nk

in
g

Users

DVFS cPICSEL aPICSEL

(c) FIFA game

Figure 5.9. User ranking distribution.

190

5.3.7 User Satisfaction

We now discuss the satisfaction levels with the Windows DVFS and

PICSEL algorithms for three applications as reported by individual users. During

the user study each participant was asked to give a satisfaction level from 1 to 5 (5

being the most satisfactory performance) for each application. Figure 5.9 illustrates

the ranks awarded by every user. cPICSEL algorithm outperforms Windows DVFS

for all three applications when aggregated over 20 users. The t-test analysis of the

results reveals that the difference is not due to chance with 90% confidence (i.e.,

cPICSEL statistically makes users happier). In the following, we will describe the

reasons for these results. On the other hand, aPICSEL and Windows DVFS

provide the same satisfaction (a t-test analysis identifies the two means to be

identical with over 99% confidence). On average, aPICSEL scheme is rated highest

for the game application (3.8) where it results least amount of power reduction.

On the other hand, for the Shockwave application, maximum power reduction for

the aPICSEL scheme came at a cost of least average rank (3.5).

We noticed that cPICSEL scheme was ranked higher on average when

compared to Windows DVFS although Windows DVFS runs the system at the

highest frequency. User dissatisfaction caused by thermal emergencies is the main

reason for this outcome. We ran an experiment in which FIFA 2005 was played

under Windows DVFS until the user observed several distinct slowdown events.

The results of this experiment are shown in Figure 5.10. This figure shows

processor temperature and frequency when FIFA 2005 is played until it triggers a

191

thermal emergency (about 1 minutes into the execution). At that point, the

frequency is reduced to the lowest frequency. This causes a perceivable slowdown

in game play. Once the emergency is over, the maximum allowed frequency is

temporarily set to the second highest frequency. If the frequency line is followed, it

is clear that this period lasts for about 30 seconds, after which the maximum

allowed frequency is again set to the highest available frequency on the processor.

This causes the temperature to rise again quickly and cause the consecutive

emergencies.

We have analyzed the traces from the user studies and found the time spent

in the second-highest operating frequency. The amount of time spent (for both

Windows DVFS and PICSEL) provides additional evidence for thermal

emergencies, since the only time DVFS will throttle the frequency below what

CPU utilization would prescribe is in the case of the temperature crossing a

thermal trip point [136].

Since cPICSEL and aPICSEL reduce the occurrence of thermal emergencies,

PICSEL was able to provide a better user satisfaction, as emergency related

frequency reductions are minimized. As a result, for applications with high

computational overload, the PICSEL scheme may deliver better user-perceived

performance by reducing the probability of thermal throttling in the CPU. The

satisfaction results also support this claim: aPICSEL provides the highest

satisfaction for the game on average, because for this highly computationally

192

intensive application, aPICSEL allows the highest reduction in temperature (and

related emergencies).

50

60

70

80

90

100

110

0.7

1.1

1.5

1.9

2.3

C
P

U
 Tem

perature [°C
]C

P
U

 F
re

qu
en

cy
 [

G
H

z]

Time

Frequency
Temperature

Figure 5.10. Thermal emergency under Windows DVFS

5.4. Related Work
Dynamic voltage and frequency scaling (DVFS) is an effective technique for

microprocessor energy and power control for most modern processors [113], [112].

Energy efficiency has been a major concern for mobile computers. Fei et al. [114]

proposed an energy aware dynamic software management framework that

improves battery utilization for mobile computers. However, this technique is only

applicable to highly adaptive mobile applications. Researchers have proposed

algorithms based on workload decomposition [115], but these tend to provide

power improvements only for memory-bound applications. Wu et al. [116]

presented a design framework of a run-time DVFS optimizer in a general dynamic

compilation system. The Razor [117] architecture dynamically finds the minimal

reliable voltage level. Dhar et al. [118] proposed adaptive voltage scaling that uses

193

a closed-loop controller targeted towards standard-cell ASICs. Intel Foxton

technology [119] provides a mechanism for select Intel Itanium 2 processors to

adjust core frequency during operation to boost application performance. However,

unlike PICSEL it does not perform any dynamic voltage setting. To the best of

our knowledge, none of the previous DVFS techniques consider the user-perceived

performance.

Other DVFS algorithms use task information, such as measuring response

times in interactive applications [120] and [121] as a proxy for the user. Vertigo

[122] monitors application messages and can be used to perform the optimizations

implemented in our study (although to the best of our knowledge this has not been

studied). However, compared to Vertigo, our approach provides a much easier

metric/framework to use. Xu et al. proposed novel schemes [123] minimizing

energy consumption in real-time embedded systems that execute variable

workloads. However, they try to adapt to the variability of the workload rather

than to the users. Gupta et al. [100] and Lin et al. [101] demonstrated a high

variation in user tolerance for performance in the scheduling context, variation

that we believe holds for power management as well. In addition, Mallik et al.

[137] showed that it is possible to utilize direct user feedback to control a power

management scheme, i.e., allow the user to control the performance of the

processor directly. However, such a scheme has the potential to annoy the user

while gathering feedback, whereas our scheme relies on inferring the user-perceived

performance and hence can be applied transparently in the system. Anand et

194

al. [126] discussed the concept of a control parameter that could be used by the

user. However, they focus on the wireless networking domain, not the CPU.

Second, they do not propose or evaluate a user interface.

Previous work [125] has explored using OS-level knowledge about screen

content to reduce the power consumption of the screen itself, however no work has

been done using knowledge of screen content to control the voltage and frequency

of a processor. Another work [124] has looked at OS-level knowledge of user-

generated events to control a DVFS scheme but has not used knowledge of screen

content. Our work combines these two approaches and uses detailed screen

information to control the CPU’s voltage and frequency levels.

In a study of user perception of both audio and video quality, it is found

that the loss of several consecutive video frames would decrease user satisfaction

up to a certain level, while an accumulation of video losses over the course of a

video would steadily decrease user satisfaction [138]. User dissatisfaction at

variations in the frame rate lay in between. Frame rate also has a significant effect

on user satisfaction, with satisfaction increasing logarithmically with the number of

frames displayed per second [139]. Finally, Gulliver and Ghinea found that both

video delay and jitter cause a significant reduction in users’ perception of the

quality of a video [134]. However, none of these results were utilized to control

processor resources.

195

5.5. Conclusion
Any architectural optimization (performance, power, reliability, security,

etc.) ultimately aims to satisfy the user. The success of such an optimization relies

upon the accuracy of its performance metrics as proxies for user satisfaction. In

this work, we argue that rather than using metrics “close to metal” (such as

instruction throughput or CPU utilization), architectures should optimize for

metrics that are “close to flesh”. To evaluate such an approach, we have developed

a new power management technique: PICSEL (Perception-Informed CPU

performance Scaling to Extend battery Life). This technique reduces CPU power

consumption in comparison with existing DVFS techniques. Extensive user studies

show that we can reduce power consumption of our target laptop on average by

7.1% for a conservative approach (cPICSEL) and 12.0% for the aggressive version

(aPICSEL) compared to the Windows XP DVFS scheme. Furthermore, CPU

temperatures can be markedly decreased through the use of our techniques. User

studies also revealed that the difference in overall user satisfaction between the

more aggressive version of PICSEL and Windows DVFS were statistically

insignificant, whereas the conservative version of PICSEL actually improved the

users’ overall satisfaction when compared to Windows DVFS.

196

CHAPTER 6

CONTRIBUTIONS AND CONCLUSIONS

 We have presented the framework for holistic architecture that optimizes

system performance by utilizing characteristic of the applications, users and

materials. We have shown that holistic architecture is capable of producing system

architectures that is not achievable using traditional microarchitectural

optimization.

The main contribution of the holistic architecture is inclusion of additional

abstraction layers into the whole spectrum of computer architecture. Traditionally

computer architecture tries to optimize system performance using resources that

are ‘within the box’. However, the user is at the top of the pyramid of all the

computing system structure. Although he is not a part of the box, his satisfaction

is the ultimate objective of every architectural optimization. To the best of our

knowledge, our work [23, 140, 141] was the first one to propose architectural

optimization based on individual user’s preferences. By including the human factor

in the abstraction layer of computer architecture, we have produced performance

197

enhancement and power consumption reduction in a computer system that is not

possible otherwise.

System performance is typically quantified using that can be measured

using metrics that are derived from low-level knowledge such as instruction

throughput, hardware utilization. These metrics serve the role of proxies for user.

However, every individual perceives system performance differently. Our PICSEL

project was pioneering in estimating user-perceived performance using proxies

(changes in display) that sit closer to the ‘body’ as compared to the ‘metal’.

The beauty of the proposed holistic approach is the consideration of

materials, the lowest layer present in computing system as well as the users, the

highest layer. As technology scales further, variations in manufacturing technology

has become prominent. The PDVS approach is one of the possible alternatives to

utilize process variation to the advantage of the consumer. Recent industry trends

in power management [119] for modern microprocessors support our assumption.

We questioned the basic assumption about hard constraint on system

reliability. Our work on Clumsy Processors was the first to propose a system that

violates the assumption that a circuit should work flawlessly even at the worst

case scenario. We improved overall system performance and energy consumption

by trading off reliability. The microarchitecture strategy for the next generation is

called resilient microarchitecture that continually detects errors, isolates faults,

confines faults, reconfigures the hardware, and thus adapts. If we can make such a

198

strategy work, there is no need for one-time factory testing or burn-in, since the

system is capable of testing and reconfiguring itself to make itself work reliably

throughout its lifetime. Clumsy Processing is one of the first steps towards such a

resilient architecture.

Our work on intelligent task allocation [22] based on statistical nature of

networking module processing was novel due its consideration for variability in

processing time. Variation in execution time is an inherent property of any

modular task. We can use a similar approach to solve the generic problem of task

allocation in Chip Multiprocessors or any other scenario where tasks need to be

distributed among a number of processing resources. We can adapt to similar

approaches to achieve performance enhancement in any domain where data

parallelism is present. Application domains exhibiting modular nature (e.g., data

mining) may largely benefit from the proposed techniques.

Ideally a computing system should be heterogeneous so that it can support

the wide variety of platforms, networks and services. It should be capable of

adapting to user preferences, ensure correctness in a variable environment and

allow optimized performance in a reconfigurable environment. The holistic vision

of system architecture would provide an efficient solution to this multifaceted

requirement.

We believe that satisfaction of the user is the prime objective of any kind of

automation. Typically the surroundings of a user can vary from a resource-rich

199

environment (working with workstations) to resource-constraint settings (using a

smart-phone). The generic applicability of holistic architecture can be implemented

to this whole gamut of environment. Its philosophy is applicable on different

application domains – embedded systems, networking hardware, high performance

computing, to name a few. We feel the introduction of such hybrid architecture

can benefit the whole population of computing systems. The new generation of

autonomic system needs to fulfill two major constraints – fault-tolerance and

fidelity-awareness. A fault tolerant system needs to detect and recover from fault

for to meet the correctness objective. On the other hand, a fidelity-aware

computing ensures the system can perform optimally with variability in available

resources (CPU performance, power, network bandwidth, memory space). We have

explored novel microarchitecture techniques that improve system performance

through optimizations at every abstraction level (user, application, operating

system, assembler, firmware, hardware and materials). We believe the philosophy

of holistic computing architecture would be one of the most effective tools in the

design of next generation computing system.

If you found this work interesting, and have additional questions, please

contact me.

Arindam Mallik
arindam@eecs.northwestern.edu

200

 REFERENCES

[1]. Brayton, R.K., G.D. Hatchtel, and A. Sangiovanni-VincenteUi, A survey of

optimization techniques for integrated circuit design. IEEE Proceedings, 1981. 69(10): p.

1334-1362.

[2]. Otten, R.H.M. Efficient Floorplan Optimization. in Proceedings of The International

Conference on Computer Aided Design. 1983.

[3]. Brooks, D., V. Tiwari, and M. Martonosi, Wattch: A Framework for Architectural-

Level Power Analysis and Optimizations, in ISCA. 2000.

[4]. Brooks, D.M., P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyuktosunoglu,

J.-D. Wellman, V. Zyuban, M. Gupta, and P.W. Cook, Power-Aware Microarchitecture:

Design and Modeling Challenges for Next-Generation Microprocessors. IEEE Micro, 2000.

20(6): p. 26-44.

[5]. Austin, T., DIVA: A Dynamic Approach to Microprocessor Verification. Journal of

Instruction Level Parallelism, May 2000. 2(11).

[6]. Austin, T. DIVA: A Reliable Substrate for Deep Submicron Microarchitecture Design.

in International Symposium on Microarchitecture. Nov. 1999.

[7]. Ernst, D., N.S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T.

Austin, T. Mudge, and K. Flautner. Razor: A Low-Power Pipeline Based on Circuit-Level

Timing Speculation. in International Symposium on Microarchitecture. Dec. 2003.

201

[8]. Ernst, D., S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N.S. Kim, and K.

Flautner, Razor: Circuit-Level Correction of Timing Errors for Low-Power Operation.

IEEE Micro, November/December, 2004. 24(6): p. 10-20.

[9]. Claasen, T., The Changing Semiconductor Industry: From Components to Silicon

Systems. euromicro, 1999. 1: p. 1008.

[10]. Tanenbaum, A.S., Structured Computer Organization. 1979, Englewood Cliffs, New

Jersey: Prentice-Hall.

[11]. Flynn, M.J., P. Hung, and K.W. Rudd, Deep-Submicron Microprocessor Design

Issues. IEEE Micro, 1999. 19(4): p. 11-22.

[12]. De, V. and S. Borkar. Technology and design challenges for low power and high

performance. in Proceedings of the 1999 international symposium on Low power

electronics and design. 1999. San Diego, California, United States.

[13]. Borkar, S. Microarchitecture and Design Challenges for Gigascale Integration -

Keynote address. in The 37th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO-37). 2004.

[14]. Borkar, S. Thousand Core Chips - A Technology Perspective. in 44th ACM/IEEE

Design Automation Conference, 2007. DAC '07. 2007.

[15]. Iyer, R.K. TRUSTED ILLIAC: A Configurable Hardware Framework for a Trusted

Computing Base. in Proceedings of the 10th IEEE High Assurance Systems Engineering

Symposium(HASE '07). 2007.

202

[16]. Cvetanovic, Z. and D. Bhandarkar. Performance Characterization of the Alpha

21164 Microprocessor Using TP and SPEC Workloads. in Proceedings of the 2nd IEEE

Symposium on High-Performance Computer Architecture (HPCA '96). 1996. Washington,

DC, USA.

[17]. Pancake, C., The ubiquitous beauty of user-aware software. ACM Communications

Journal, 2001. 44(3).

[18]. Lee, C.B. and A.E. Snavely. Precise and realistic utility functions for user-centric

performance analysis of schedulers. in Proceedings of the 16th international symposium on

High performance distributed computing (HPDC '07). 2007. Monterey, California, USA:

ACM.

[19]. Mallik, A. and G. Memik. A Case for Clumsy Packet Processors. in International

Symposium on Microarchitecture. Dec. 2004. Portland, OR.

[20]. Mallik, A., M.C. Wildrick, and G. Memik, Application-Level Error Measurements

for Network Processors Institute of Electronics, Information and Communication

Engineers (IEICE) Transactions on Information and Systems, 2005. E88-D(8): p. 1870-

1877.

[21]. Mallik, A., M.C. Wildrick, and G. Memik. Measuring Application Error Rates for

Network Processors. in IEEE International Midwest Symposium on Circuits and Systems

(MWSCAS). July 2004. Hiroshima, Japan.

203

[22]. Mallik, A. and G. Memik. Automated Task Distribution in Multicore Network

Processors using Statistical Analysis. in The Symposium on Architectures for Networking

and Communications Systems (ANCS-2007) 2007.

[23]. Mallik, A., B. Lin, P. Dinda, G. Memik, and R.P. Dick, Process and User Driven

Dynamic Voltage and Frequency Scaling, in Technical Report NWU-EECS-06-11. 2006,

Department of Electrical Engineering and Computer Science, Northwestern University.

[24]. Dinda, P., G. Memik, R. Dick, B. Lin, A. Mallik, A. Gupta, and S. Rossoff. The

User In Experimental Computer Systems Research. in Workshop on Experimental

Computer Sciencein conjunction with The Federated Computer Research Conference

(FCRC) (submitted for review). 2007.

[25]. Srinivasan, G.R., Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated

Circuits: An Overview. IBM Journal of Research and Development, Jan. 1996. 40(1): p.

77-89.

[26]. HP. Nonstop Computing. [cited; Available from: http://nonstop.compaq.com].

[27]. Memik, G., W.H. Mangione-Smith, and W. Hu. NetBench: A Benchmarking Suite

for Network Processors. in International Conference on Computer-Aided Design (ICCAD).

Nov. 2001. San Jose / CA.

[28]. Shivakumar, P., M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the

Effect of Technology Trends on the Soft Error Rate of Combinational Logic. in

International Conference on Dependable Systems and Networks (DSN). June 2002.

204

[29]. Srinivasan Jayant, S.V.A., Pradip Bose , Jude A. Rivers. The Impact of Technology

Scaling on Lifetime Reliability. in DSN 04. June 2004.

[30]. Shivakumar, P., M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling the

Effect of Technology Trends on the Soft Error Rate of Combinational Logic. in 2002

International Conference on Dependable Systems and Networks. 2002: 389-398.

[31]. Hazucha P, S.C., Impact of cmos technology scaling on the atmospheric neutron soft

error rate. IEEE Transactions on Nuclear Science, 2000. 47(6).

[32]. Karnik T., B.B., Soumyanath K, De V., Borkar S. Scaling trends of cosmic ray

induced soft errors in static latches beyond 0.18u. in Symposium on VLSI Circuits. 2001.

[33]. Seifert N., M.D., Leland N., Hokinson R. Historical trend in alpha-particle induced

soft error rates of the alphatm microprocessor. in 39th Annual IEEE International

Reliability Physics Symposium. 2001.

[34]. International, O.f.S., ISO Information Processing Systems - Data Communication

High-Level Data Link Control Procedure - Frame Structure. Oct. 1984.

[35]. Cell, R.R. CRC-32 Calculation, Test Cases and HEC Tutorial. [cited; Available

from: http://cell.onecall.net/cell-relay/publications/software/].

[36]. FreeBSD, P.T., FreeBSD Operating System.

[37]. Baker, F., Requirements for IP version 4 routers. June 1995.

[38]. Shreedhar, M. and G. Varghese. Efficient Fair Queuing using Deficit Round Robin.

in SIGCOMM'95. Aug/Sep 1995. Camridge / MA.

205

[39]. Rivest, R., The MD5 Message-Digest Algorithm. Apr. 1992.

[40]. RSA Data Security, I. RSA Security Downloads. [cited; Available from:

http://www.rsasecurity.com/download].

[41]. PMC-Sierra, I. URL-based Switching, PMC-2002232. Feb. 2001 [cited; Available

from: http://www.pmcsierra.com].

[42]. Burger, D. and T. Austin, SimpleScalar Tool Set, Version 2.0. June 1997, University

of Wisconsin.

[43]. Turmon, M., R. Granat, and D. Katz. Software-implemented fault detection for high-

performance space applications. in International Conference on Dependable Systems and

Networks (DSN). June 2000.

[44]. Bose, P. Ensuring dependable processor performance: an experience report on pre-

silicon performance validation. in International Conference on Dependable Systems and

Networks (DSN). July 2000.

[45]. Anghel, L. and M. Nicolaidis. Cost Reduction and Evaluation of a Temporary Faults

Detecting Technique. in Design Automation and Test in Europe (DATE). March 2000.

[46]. Patel, S.J., Z. Kalbarczyk, R.K. Iyer, W. Magda, and N. Nakka. A Processor-Level

Framework for High-Performance and High-Dependability. in Workshop on Evaluating and

Architecting Systems for Dependability. 2001.

[47]. Iyer, R.K. Experimental Evaluation. in Special Issue of Proc. 25th Int. Symp. on

Fault-Tolerant Computing (FTCS-25). 1995. Pasadena, CA.

206

[48]. Czeck, E. and D. Siewiorek, Observations on the Effects of Fault Manifestation as a

Function of Workload. IEEE Transactions on Computers, May 1992. 41(5): p. 559--566.

[49]. Folkesson, P., S. Svensson, and J. Karlsson. A Comparison of Simulation Based and

Scan Chain Implemented Fault Injection. in 28th Int. Symp. on Fault-Tolerant Computing

(FTCS-28). June 1998. Munich, Germany.

[50]. Borkar, S. Thousand Core ChipsA Technology Perspective. in 44th ACM/IEEE

Design Automation Conference, 2007. DAC '07. 2007.

[51]. Srinivasan, J.R., Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated

Circuits: An Overview. IBM Journal of Research and Development, Jan. 1996. 40(1): p. p.

77-89.

[52]. HP, Nonstop computing, http://nonstop.compaq.com.

[53]. Hamming, R.W., Error Detecting and Correcting Codes. Bell System Technical

Journal, 1950. 26(2): p. 147-160.

[54]. Krishna, C.M. and L.-H. Lee. Voltage-clock-scaling adaptive scheduling techniques

for low power in hard real-time Systems. in Real Time Technology and Applications Symp.

May 2000.

[55]. Shivakumar, P., M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling the

Effect of Technology Trends on the Soft Error Rate of Combinational Logic. in

International Conference on Dependable Systems and Networks (DSN). June 2002.

207

[56]. Li, L., V. Degalahal, N. Vijaykrishnan, M. Kandemir, and M.J. Irwin. Soft error and

energy consumption interactions: a data cache perspective. in ACM/IEEE International

Symposium on Low Power Electronics and Design. 2004.

[57]. Montanaro, J., R.T. Witek, K. Anne, A.J. Black, E.M. Cooper, D.W. Dobberpuhl,

P.M. Donahue, J. Eno, W. Hoeppner, D. Kruckemyer, T.H. Lee, P.C.M. Lin, L. Madden,

D. Murray, M.H. Pearce, S. Santhanam, K.J. Snyder, R. Stehpany, and S.C. Thierauf, A

160-MHz, 32-b, 0.5-W CMOS RISC microprocessor. IEEE Journal of Solid-State Circuits,

1996. 31(11): p. 1703-14.

[58]. Wilton, S. and N. Jouppi, An enhanced access and cycle time model for on-chip

caches. July 1995, Digital Western Research Laboratory, 93/5.

[59]. Phelan, R., Addressing Soft Errors in ARM Core-based SoC. Dec. 2003, ARM Ltd.

[60]. Turmon, M., R. Granat, and D. Katz. Software-implemented fault detection for high-

performance space applications. in International Conference on Dependable Systems and

Networks (DSN). June 2000.

[61]. Srinivasan, G.R., Modeling the Cosmic-Ray-Induced Soft-Error Rate in Integrated

Circuits: An Overview. IBM Journal of Research and Development, Jan. 1996. 40(1): p. p.

77-89.

[62]. Bose, P. Ensuring dependable processor performance: an experience report on pre-

silicon performance validation. in International Conference on Dependable Systems and

Networks (DSN). July 2000.

208

[63]. Anghel, L.a.M.N. Cost Reduction and Evaluation of a Temporary Faults Detecting

Technique. in Design Automation and Test in Europe (DATE). March 2000.

[64]. Annavaram, M., J.M. Patel, and E.S. Davidson. Data prefetching by dependence

graph precomputation. in 28th Annual International Symposium on Computer

Architecture. 2001. Göteborg, Sweden.

[65]. Reinhardt, S.K. and S.S. Mukherjee. Transient Fault Detection via Simultaneous

Multithreading. in 27th Annual International Symposium on Computer Architecture. June

2000.

[66]. Mukherjee, S.S., M. Kontz, and S.K. Reinhardt. Detailed Design and Evaluation of

Redundant Multithreading Alternatives. in International Symposium on Computer

Architecture (ISCA). May 2002.

[67]. Rashid, F., K. K. Saluja, and P. Ramanathan. Fault tolerance through re-execution

in multiscalar architecture. in International Conference on Dependable Systems and

Networks (DSN). June 2000.

[68]. Gomaa, M., C. Scarbrough, T. N. Vijaykumar, and I. Pomeranz. Transient-Fault

Recovery for Chip Multiprocessors. in International Symposium on Computer

Architecture. June 2003. San Diego, CA.

[69]. Iyer, R.K. Experimental Evaluation. in 25th Int. Symp. on Fault-Tolerant Computing

(FTCS-25). 1995. Pasadena, CA.

[70]. Mukherjee, S.S., C.T. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. A

Systematic Methodology to Compute the Architectural Vulnerability Factors for a High-

209

Performance Microprocessor. in International Symposium on Microarchitecture. Dec.

2003.

[71]. Intel. Intel® IXP2850 Network Processor. 2004 [cited; Available from:

http://www.intel.com/design/network/products/npfamily/ixp2850.htm].

[72]. Intel, C., Intel® IXP2800 Network Processor Product Brief. 2002: Santa Clara/CA.

[73]. Kohler, E., R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek, The Click modular

router. ACM Transactions on Computer Systems, 2000. 18(3): p. 263-97.

[74]. Shah, N., W. Plishker, and K. Keutzer. NP-Click: A Programming Model for the

Intel IXP1200. in 2nd Workshop on Network Processors (NP-2) at the 9th International

Symposium on High Performance Computer Architecture (HPCA-9). February, 2003.

Anaheim, CA.

[75]. Vin, H.M., J. Mudigonda, J. Jason, E.J. Johnson, R. Ju, A. Kunze, and R. Lian. A

Programming Environment for Packet-processing Systems: Design Considerations. in The

Workshop on Network Processors & Applications - NP3. Held in conjunction with The

10th International Symposium on High-Performance Computer Architecture 2004.

[76]. Intel, Intel Microengine C Compiler Support: Reference Manual. 2002.

[77]. Leary, K. and W. Waddington. DSP/C: A Standard high level language for DSP and

Numeric Processing. in Proc. Int. Conf. Acoustics, Speech and Signal Processing. 1990.

[78]. Kahn, G. The semantics of a simple language for parallel programming. in Proc. of

the IFIP Congress 74. 1974. North Holland.

210

[79]. Balarin, F., Hardware-Software Co-Design of Embedded Systems: The POLIS

Approach. 1997, Massachusetts: Kluwer Academic Publisher.

[80]. Edwards, S. Compiling Esterel into Sequential Code. in Proceedings of the 37th

Design Automation Conference (DAC 2000). 2000. Los Angeles, California.

[81]. Wind River Systems Inc, VxWorks Reference Manual. 1999.

[82]. J. Nickolls et al, Broadcom Calisto: A Multi-Channel Multi-Service Communications

Platform, in Hot Chips. 2002.

[83]. Baker, F., Requirements for IP version 4 routers. RFC 1812, June 1995.

[84]. Tsai, M., C. Kulkarni, C. Sauer, N. Shah, and K. Keutzer. A Benchmarking

Methodology for Network Processors. in 1st Network Processor Workshop, 8th Int.

Symposium on High Performance Architectures. 2002.

[85]. Postel, J., Internet Control Message Protocol. RFC 792 (Sept.), Internet Engineering

Task Force. ftp://ftp.ietf.org/rfc/rfc0792.txt. 1981.

[86]. Postel, J., Internet Protocol. RFC 791 (Sept.), Internet Engineering Task Force.

ftp://ftp.ietf.org/rfc/rfc0791.txt, 1981.

[87]. Schreedhar, M. and G. Varghese. Efficient Fair Queueing using Deficit Round

Robin. in SIGCOMM'95. Aug/Sep 1995. Cambridge, MA.

[88]. Kohler, E. The Click Modular Router Project. in http://pdos.csail.mit.edu/click.

211

[89]. Burger, D. and T. Austin, The SimpleScalar Tool Set, Version 2.0. 1997, Univ. of

Wisconsin-Madison, Comp. Sc. Dept.

[90]. Devadas, S. and A.R. Newton., Algorithms for Hardware Allocation in Datapath

Synthesis. IEEE Trans. On CAD, July 1989. 8, No. 7, pp. 768-781,(7).

[91]. Chekuri, C., Approximation Algorithms for Scheduling Problems,Technical Report

CS-TR-98-1611,, Computer Science Department, Stanford University. August 1998.

[92]. Shachnai, H. and T. Tamir. Polynomial time approximation schemes for class-

constrained packing problems. in Proceedings of Workshop on Approximation Algorithms.

2000.

[93]. Chen, M.K., X.F. Li, R. Lian, J.H. Lin, L. Liu, T. Liu, and R. Ju, Shangri-La:

achieving high performance from compiled network applications while enabling ease of

programming. ACM SIGPLAN Notices, 2005. 40(6): p. 224-236.

[94]. Gordon, M.I., W. Thies, and S. Amarasinghe, Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs, in International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS). 2006. p. 151-162.

[95]. Plishker, W., K. Ravindran, N. Shah, and K. Keutzer. Automated Task Allocation

for Network Processors. in Network System Design Conference Proceedings. October,

2004.

[96]. Srinivasan, A., Multiprocessor Scheduling in Processor-based Router Platforms:

Issues and Ideas. Network Processor Design:Issues and Practices, November 2003.

212

[97]. Memik, G. and W.H. Mangione-Smith. NEPAL: A Framework for Efficiently

Structuring Applications for Network Processors. in Workshop on Network Processors –

NP2 (held in conjunction with HPCA). Feb. 2003. Anaheim, CA.

[98]. Datar, S. and M.A. Franklin, Task Scheduling of Processor Pipelines with

Application to Network Processors, Department of Computer Science and Engineering,

Washington University in St.Louis.

[99]. Borkar, S., T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De,

Parameter Variations and Impact on Circuits and Microarchitecture, in Proceedings of the

ACM/IEEE Design Automation Conference (DAC). 2003.

[100]. Gupta, A., B. Lin, and P.A. Dinda, Measuring and Understanding User Comfort

with Resource Borrowing. Proceedings of the 13th IEEE International Symposium on High

Performance Distributed Computing (HPDC 2004), 2004.

[101]. Lin, B. and P. Dinda, Putting the user in direct Control of CPU Scheduling. The

15th IEEE International Symposium on High Performance Distributed Computing

(HPDC), 2006.

[102]. Corporation, M. Performance Logs and Alerts overview. [cited; Available from:

http://www.microsoft.com/windows2000/en/advanced/help].

[103]. Podien, W. CPUCool. [cited; Available from: http:// www. cpufsb. de/

CPUCOOL. HTM].

[104]. Wang, Z. and J. Crowcroft, Eliminating Periodic Packet Losses in the 4.3-Tahoe

BSD TCP Congestion Control Algorithm. ACM Computer Communications Review, 1992.

213

[105]. Stevens, W., TCP Slow Start, Congestion Avoidance, Fast Retransmit and Fast

Recovery Algorithms. Internet RFC 2001, 1997.

[106]. Fall, K. and S. Floyd, Simulation-based comparisons of Tahoe, Reno and SACK

TCP. SIGCOMM Computer Communication Review, 1996. 26(3): p. 5-21.

[107]. Waizman, A. and C. Chung, Resonant free Power Network Design using Extended

Adaptive Voltage Positioning ({EAVP}) Methodology. IEEE Transactions on Advanced

Packaging, 2001. 24(3): p. 236-244.

[108]. Intel Corporation, Intel Pentium M Datasheet. [cited; Available from:

http://developer.intel.com/design/mobile/pentium-m/documentation.htm].

[109]. Intel Corporation, Intel Pentium M Processor Thermal Management.

[110]. Jaider, M. Notebook Hardware Control Personal Edition. [cited; Available from:

http://www.pbus-167. com/chc.htm].

[111]. Srinivasan, J., S.V. Adve, P. Bose, and J.A. Rivers. The Case for Lifetime

Reliability-Aware Microprocessors. in International Symposium on Computer Architecture

(ISCA). June 2004. Munich, Germany.

[112]. Brock, B. and K. Rajamani. Dynamic Power Management for Embedded Systems.

in Proceedings of the IEEE SOC Conference. 2003. Portland, Oregon, USA.

[113]. Gochman, S. and R. Ronen, The Intel Pentium M Processor: Microarchitecture and

Performance. Intel Technology Journal, 2003.

214

[114]. Fei, Y., L. Zhong, and N.K. Jha, An Energy-aware Framework for Coordinated

Dynamic Software Management in Mobile Computers. IEEE/ACM Int. Symp. on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2004.

[115]. Choi, K., R. Soma, and M. Pedram, Dynamic Voltage and Frequency Scaling based

on Workload Decomposition. Proceedings of The 2004 International Symposium on Low

Power Electronics and Design (ISLPED '04), 2004: p. 174-179.

[116]. Wu, Q., V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi, and D.W.

Clark, Dynamic Compilation Framework for Controlling Microprocessor Energy and

Performance. 38th International Symposium on Microarchitecture (MICRO-38), 2005.

[117]. Ernst, D., N.S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw, T.

Austin, and T. Mudge, Razor: A Low-Power Pipeline Based on Circuit-Level Timing

Speculation. ACM/IEEE International Symposium on Microarchitecture (MICRO), 2003.

[118]. Dhar, S., D. Maksimovic, and B. Kranzen, ClosedLoop Adaptive Voltage Scaling

Controller For Standard Cell ASICs. Proceedings of The International Symposium on Low

Power Electronics and Design (ISLPED) 2005: p. 251-254.

[119]. John Wei. Foxton Technology Pushes Processor Frequency, Application

Performance.

[120]. Lorch, J. and A. Smith, Using User Interface Event Information in Dynamic

Voltage Scaling Algorithms. Technical Report UCB/CSD-02-1190, Computer Science

Division, EECS, University of California at Berkeley, August 2002.

215

[121]. Yan, L., L. Zhong, and N.K. Jha, User-perceived Latency based Dynamic Voltage

Scaling for Interactive Applications. Proceedings of ACM/IEEE Design Automation

Conference (DAC '05), 2005.

[122]. Flautner, K. and T. Mudge, Vertigo: Automatic Performance-Setting for Linux.

Proceedings of the 5th Symposium on Operating Systems Design and Implementation

(OSDI), 2002.

[123]. Xu, R., D. Moss, and R. Melhem, Minimizing Expected Energy in Real-time

Embedded Systems. Proceedings of the 5th ACM international conference on Embedded

software(EMSOFT), 2005: p. 251-254.

[124]. Gurun, S. and C. Krintz, AutoDVS: an Automatic, General-purpose, Dynamic

Clock Scheduling System for Hand-held Devices. EMSOFT '05: Proceedings of the 5th

ACM international conference on Embedded software, 2005: p. 218-226.

[125]. Ranganathan, P., E. Geelhoed, M. Manahan, and K. Nicholas, Energy-Aware User

Interfaces and Energy-Adaptive Displays. Computer, 2006. 39(3): p. 31-38.

[126]. Anand, M., E. Nightingale, and J. Flinn, Self-tuning Wireless Network Power

Management, in The Ninth Annual International Conference on Mobile Computing and

Networking (MobiCom'03). 2003: San Diego, California, USA.

[127]. Cohen, A., F. Finkelstein, A. Mendelson, R. Ronen, and D. Rudoy, On Estimating

Optimal Performance of CPU Dynamic Thermal Management. IEEE Computer

Architecture Letters, 2003. 2(1).

216

[128]. Skadron, K., M.R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and D.

Tarjan, Temperature-aware Microarchitecture: Modeling and Implementation. ACM

Transactions Architecture Code Optimization, 2004. 1(1): p. 94-125.

[129]. Rohou, E. and M. Smith, Dynamically Managing Processor Temperature and

Power, in 2nd Workshop on Feedback Directed Optimization. 1999.

[130]. Liu, D. and C. Svensson, Trading Speed for Low Power by Choice of Supply and

Threshold Voltages. IEEE Journal on Solid-State Circuits, 1993. 28: p. 10-17.

[131]. Brooks, D. and M. Martonosi, Adaptive Thermal Management for High-Performance

Microprocessors, in Workshop on Complexity Effective Design. 2000.

[132]. Corporation, T., The Technology Behind the Crusoe Processor. 2000.

[133]. Ghinea, G. and J.P. Thomas, Quality of Perception: User Quality of Service in

Multimedia Presentations. IEEE Transactions on Multimedia, 2005. 7(4): p. 786-789.

[134]. Gulliver, S.R. and G. Ghinea, The Perceptual and Attentive Impact of Delay and

Jitter in Multimedia Delivery. IEEE Transactions on Broadcasting, 2007. 53(2): p. 449-

458.

[135]. Wolfram Podien. CPUCool. [cited 2007; Available from: http://www.cpu-

cool.de/index.html].

[136]. Corporation, M., Windows Native Processor Performance Control, in Windows

Platform Design Notes. 2002, Microsoft Corporation.

217

[137]. Mallik, A., B. Lin, G. Memik, P. Dinda, and R.P. Dick, User-Driven Frequency

Scaling. IEEE Computer Architecture Letters, 2006. 5(2): p. 16.

[138]. Wijesekera, D., J. Srivasyava, A. Nerode, and M. Foresti, Experimental evaluation

of loss perception in continuous media. Multimedia Systems, 1999. 7(6): p. 486-499.

[139]. Claypool, M., K. Claypool, and F. Damaa, The Effects of Frame Rate and

Resolution on Users Playing First person Shooter Games, in Proceedings of ACM/SPIE

Multimedia Computing and Networking (MMCN) Conference. 2006: San Jose, California,

USA.

[140]. Mallik, A., B. Lin, G. Memik, P. Dinda, and R.P. Dick, User-Driven Frequency

Scaling. IEEE Computer Architecture Letters (CAL), 2007.

[141]. Lin, B., A. Mallik, G. Memik, P. Dinda, and R.P. Dick. Power Reduction Through

Measurement and Modeling of Users and CPUs. in The International Conference on

Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2007). 2007.

California, USA.

