
Learning and Leveraging the Relationship between Architecture-Level
Measurements and Individual User Satisfaction

Alex Shye Berkin Ozisikyilmaz Arindam Mallik Gokhan Memik
Peter A. Dinda Robert P. Dick Alok N. Choudhary

Dept. Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208

Abstract

The ultimate goal of computer design is to satisfy the end-

user. In particular computing domains, such as interactive

applications, there exists a variation in user expectations

and user satisfaction relative to the performance of existing

computer systems. In this work, we leverage this variation

to develop more efficient architectures that are customized

to end-users. We first investigate the relationship between

microarchitectural parameters and user satisfaction.

Specifically, we analyze the relationship between hardware

performance counter (HPC) readings and individual

satisfaction levels reported by users for representative

applications. Our results show that the satisfaction of the

user is strongly correlated to the performance of the

underlying hardware. More importantly, the results show

that user satisfaction is highly user-dependent. To take

advantage of these observations, we develop a framework

called Individualized Dynamic Voltage and Frequency

Scaling (iDVFS). We study a group of users to characterize

the relationship between the HPCs and individual user

satisfaction levels. Based on this analysis, we use artificial

neural networks to model the function from HPCs to user

satisfaction for individual users. This model is then used

online to predict user satisfaction and set the frequency

level accordingly. A second set of user studies

demonstrates that iDVFS reduces the CPU power

consumption by over 25% in representative applications as

compared to the Windows XP DVFS algorithm.

1. Introduction

Any architectural optimization (performance, power,
reliability, security, etc.) ultimately aims at satisfying the
end-user. However, understanding the happiness of the user
during the run of an application is complicated. Although it
may be possible to query the user frequently, such explicit
interaction will annoy most users. Therefore, it would be
beneficial to estimate user satisfaction using implicit
metrics. Traditionally, computer architects have used
implicit metrics such as instructions retired per second
(IPS), processor frequency, or the instructions per cycle
(IPC) as optimization objectives. The assumption behind
these metrics is that they relate in a simple way to the
satisfaction of the user. When two systems are compared, it
is assumed, for example, that the system providing a higher
IPS will result in higher user satisfaction. For some
application domains, this assumption is generally correct.
For example, the execution time of a long running batch

application is largely determined by the IPS of the
processor. Hence, increasing IPS will result in an increase
in user satisfaction. However, in this paper we show that the
relationship between hardware performance and user
satisfaction is complex for interactive applications and an
increase in a metric like IPS does not necessarily result in
an increase in user satisfaction. More importantly, we show
that the relationship between hardware performance and
user satisfaction is highly user-dependent. Hence, we
explore the feasibility of estimating individual user
satisfaction from hardware metrics, develop accurate non-
linear models to do so, and use these models for run-time
power management.

Driving architectural decisions from estimates of user
satisfaction has several advantages. First, user satisfaction is
highly user-dependent. This observation is not surprising.
For example, an expert gamer will likely demand
considerably more computational power than a novice user.
In addition, each user has a certain “taste”; for example,
some users prefer to prolong battery life, while others prefer
higher performance. If we know the individual user’s
satisfaction with minimal perturbation of program
execution, we will be able to provide a better experience for
the user. Second, when a system optimizes for user
satisfaction, it will automatically customize for each
application. Specifically, a system that knows the user’s
satisfaction with a given application will provide the
necessary performance to the user. For interactive
applications, this may result in significant advantages such
as power savings or increased lifetime reliability. For
example, one of our target applications exhibits no
observable change in performance when the frequency of
the processor is set to its lowest level. In this case, our
system drastically reduces the power consumption
compared to traditional approaches without sacrificing user
satisfaction.

Ultimately, our goal is to map microarchitectural
information to user satisfaction. Such a map can then be
used to understand how changes in microarchitectural
metrics affect user satisfaction. Modern microprocessors
contain integrated hardware performance counters (HPCs)
that count architectural events (e.g., cache misses) as well
as a variety of events related to memory and operating
system behavior [1-3]. In this work, we aim at finding a
mapping from the HPC readings to user satisfaction. We
first show that there is a strong correlation between the
HPCs and user satisfaction. However, the relationship
between the two is often non-linear and user-dependent.

A good estimate of user satisfaction derived from
microarchitectural metrics can be used to minimize power
consumption while keeping users satisfied. Although
utilizing user satisfaction in making architectural decisions
can be employed in many scenarios, in this work, we focus
on dynamic voltage and frequency scaling (DVFS) [8],
which is one of the most commonly used power reduction
techniques in modern processors. DVFS make decisions
online to change microprocessor frequency and voltage
according to processing needs. Existing DVFS techniques
in high-performance processors select an operating point
(CPU frequency and voltage) based on the utilization of the
processor. Like many other architectural optimizations,
DVFS is pessimistic about user satisfaction and assumes
that the maximum processor frequency is necessary for
every process that has a high CPU utilization. We show that
incorporating user satisfaction into the decision making
process can improve the power reduction yielded by DVFS.
Specifically, our contributions in this work follow:

• We unveil a strong relationship between HPCs and
user satisfaction for interactive applications;

• We show that this relationship is often non-linear,
complex, and highly user-dependent;

• We show that individual user satisfaction can be
accurately predicted using neural network models;

• We design Individualized Dynamic Voltage and

Frequency Scaling (iDVFS), which employs user
satisfaction prediction in making decisions about the
frequency of the processor; and

• We implement and evaluate iDVFS on Windows with
user studies that show it reduces power consumption
compared to Window DVFS.

The paper is organized as follows. In Section 2, we give
an introduction to hardware counters. Section 3 describes
our user study process. Section 4 presents results showing
the relationship between user satisfaction and hardware
counters. The predictive user-aware power management
scheme is described in Section 5. Section 6 presents the
results obtained from user studies. We compare our work
with previous studies in Section 7. Section 8 summarizes
our contributions.

2. Hardware Performance Counters

Modern microprocessors include integrated hardware
performance counters (HPC) for non-intrusive monitoring
of a variety of processor and memory system events [1-3].
HPCs provide low-overhead access to a wealth of detailed
performance information related to CPU's functional units,
caches, main memory, etc. Even though this information is
generally statistical in nature, it does provide a window into
certain behaviors that are otherwise impractical to observe.
For instance, these events include various counts of
instructions, cache activity, branch mispredictions, memory
coherence operations, and functional unit usage. Several
tools and microprocessors have extended this functionality
beyond simple event counting. For example, Intel's Itanium
processors [2, 18] have features that allow monitoring

specific events based on an instruction or data address
range, a specific instruction opcode, or execution at specific
privilege levels.

Current microprocessors support a limited number of
HPCs. For example, the IA-64 architectures only support
counting four events at a time [2]. In our experiments, we
use the Pentium M processor which only supports two
counters at a time. As a result, it is not possible to collect all
hardware information simultaneously. One workaround is to
time multiplex sets of counters and then scale the values
appropriately. Azimi, Stum, and Wisniewski [7] show that
time multiplexing up to 10 sets of counters provides
statistically significant counter values. Despite this
limitation, the low-overhead access to low-level
architectural information provided by HPCs is very useful
and is often leveraged in run-time profiling and
optimization systems [6, 22].

We use WinPAPI, the Windows variant of PAPI [9], to
access the HPCs present in the processor. In our study we
concentrate on the nine specific performance metrics listed
in Table 1. These counters are manually selected as a
representative set of the HPCs available on the Pentium M.
The choice of using only nine counters is due to a WinPAPI
limitation. We collect counter values every 100 ms.
WinPAPI automatically time multiplexes and scales the
nine event counters.

Table 1. HPCs used in experiments.
PAPI counter Description

PAPI_TOT_INS Instructions issued

PAPI_RES_STL Cycles stalled on any resource

PAPI_TOT_CYC Total cycles

PAPI_L2_TCM Level 2 cache misses

PAPI_BTAC_M Branch target address cache misses

PAPI_BR_MSP Conditional branches mispredicted

PAPI_HW_INT Hardware interrupts

PAPI_L1_DCA Level 1 data cache accesses

PAPI_L1_ICA Level 1 instruction cache accesses

3. User Study Setup

To explore the relationships between different
microarchitectural parameters and user satisfaction, we
conduct two sets of studies with 20 users. Our experiments
are done using an IBM Thinkpad T43p with a 2.13 GHz
Pentium M-770 CPU and 1 GB memory running Microsoft
Windows XP Professional SP2. The laptop is tethered to
the power outlet during all experiments. Although eight
different frequency levels can be set on the Pentium M-770
processor, only six can be used due to limitations in the
SpeedStep technology. For both user studies, we
experiment with three types of applications: a 3D
Shockwave animation, a Java game, and high-quality video
playback. The details of these applications follow:

• Shockwave: Watching a 3D Shockwave animation
using the Microsoft Internet Explorer web browser.
The user watches the animation and is encouraged to
press the number keys to change the camera’s
viewpoint. The animation is stored locally.
Shockwave options are configured so that rendering is
done entirely in software on the CPU.

• Java Game: Playing a Java based First Person Shooter
(FPS). The users have to move a tank and destroy
different targets to complete a mission. The game is
CPU-intensive.

• Video: Watching a DVD quality video using
Windows Media Player. The video uses high
bandwidth MPEG-4 encoding.

Since we target the CPU in this paper, we picked three
applications with varying CPU requirements: the
Shockwave animation is very CPU-intensive, the Video
places a relatively low load on the CPU, and the Java game
falls between these extremes.

Our user studies are double-blind, randomized, and
intervention-based. We developed a user pool by
advertising our studies within Northwestern University.
While many of the participants were CS, CE, or EE
graduate students, our users included inexperienced
computer users as well.

4. User Satisfaction and Hardware Counters

The primary objective of our first user study is to explore
the correlation between HPCs and user satisfaction. The
monitored hardware counters are listed in Table 1. In this
first set of experiments, the users are asked to carry out the
three application tasks as described in Section 3. During
execution, we randomly change the frequency and ask the
users to verbally rank their experience on a scale of 1
(discomfort) to 10 (very comfortable). Users typically
provided a satisfaction rating within 5-10 seconds. These
satisfaction levels are then recorded along with the HPC
readings and analyzed as described in the next section.
Then we compute the maximum, minimum, average, range,
and the standard deviation of the counter values for up to 5
seconds within the given interval. The end result is a vector
of 45 metrics for each satisfaction level reported by the
user. Note that since we have performed the user studies
with 20 users and three applications, we collected 360 user
satisfaction levels.

We then find the correlation of the 45 metrics to the user
satisfaction rating by using the formula:

∑ ∑ ∑ ∑

∑ ∑ ∑
−−

−

=

])(][)([

))((

2222
,

yyNxxN

yxxyN
r yx

Pearson’s Product Moment Correlation Coefficient (r) is
commonly used to find correlation among two data series (x
and y) and results in a value between –1 and 1. If the
correlation is negative, the series have negative
relationship; if it's positive, the relationship is positive. The
closer the coefficient is to either −1 or 1, the stronger the
correlation between the variables. Thus, the magnitude of

these correlations allows us to compare the relative value of
each independent variable in the predicting the dependent
variable.

The correlation factors for each of the 45 parameters and
the user rating are presented in Appendix A. In summary,
we observe a strong correlation between the hardware
metrics and user satisfaction rating: there are 21 parameters
that correlate with the user satisfaction rating by a factor
above 0.7 (all these 21 parameters have a factor ranging
between 0.7 and 0.8) and there are 35 parameters with
factors exceeding 0.5. On one hand, this result is intuitive;
it is easy to believe that metrics representing processor
performance relate to user satisfaction. On the other hand,
observing the link between such a high-level quantity as
measured user satisfaction and such low-level metrics as
level 2 cache misses is intriguing.

We classify the metrics (and their correlations with user
satisfaction) based on their statistical nature (mean,
maximum, minimum, standard deviation, and range). The
mean and standard deviation of the hardware counter values
have the highest correlation with user satisfaction rating. A
t-test analysis shows with over 85% confidence that mean
and standard deviation both have higher r values when
compared to the minimum, maximum, and range of the
HPC values.

We analyze the correlations between the satisfaction
results and user. Note that the r value cannot be used for
this purpose, as the user numbers are not independent.
Instead, we repeatedly fit neural networks to the data
collected for each application, attempting to learn the
overall mapping from HPCs to user satisfaction. As the
inputs to the neural network, we use the HPC statistics
along with a user identification for each set of statistics.
The output is the self-reported user satisfaction rating. In
each fitting, we begin with a three-layer neural network
model using 50 neurons in the hidden layer (neural
networks are described in more detail in Section 5.1.1).
After each model is trained, we perform a sensitivity
analysis to find the effect of each input on the output.
Sensitivity analysis consists of making changes at each of
the inputs of the neural network and observing the
corresponding effect on the output. The sensitivity to an
input parameter is measured on a 0 to 1 scale, called the
relative importance factor, with higher values indicating
higher sensitivity. By performing sensitivity analysis, we
can find the input parameters that are most important in
determining an output parameter, i.e., user satisfaction.
During this process, we consistently find that the user

number input has by far the highest relative importance

factor. Averaging across all of our application tasks, the
relative importance factor of the user number is 0.56 (more
than twice as high as the second factor). This strongly
demonstrates that the user is the most important factor in
determining the rating.

Finally, to understand the nature of the relationship
between the HPCs and the user satisfaction, we analyze the
trends for different functions for user satisfaction as
provided by the user at each of the processor frequencies.

Table 2. User trend categorization, the number of users in each category for each application.

Applications

Constant

Linear

Step

Staircase Other

Java Game 0 4 8 4 4

Shockwave 1 5 7 6 1

Video 18 0 0 0 2

Figure 1. Framework of the predictive user-aware power management.

Table 2 summarizes the trends observed among different
users for our three applications. The first row shows the
trend curves when we plot user satisfaction against the
different frequencies (along x-axis). Most of the trends can
be placed in four major categories:

• Constant – User satisfaction remains unchanged with
frequency. As a result, it is not affected by frequency
setting.

• Linear – User satisfaction increases linearly with
processor frequency.

• Step – User satisfaction is the same for a few high
frequencies but then plummets suddenly for the
remaining lower ones.

• Staircase – User satisfaction takes on discrete values
that monotonically increase with increasing frequency.

User satisfaction functions that do not match any of the
above categories are labeled Other. Usually, this is due to
user feedback which provides a non-monotonic function

These results reveal several important trends. First, user
satisfaction is often non-linearly related to processor
frequency. The majority of users provide functions that are
categorized as Constant, Step, or Staircase. Note that
although Constant is a linear function, it does not follow the
regular assumption that an increase in a given metric results
in an increase in user satisfaction. Second, user satisfaction
is application-dependent. For example, for the Video
application, almost all of the users report a Constant
function. On the other hand, the trends for the Java game
are distributed among various categories. Finally, user

satisfaction is user-dependent. For example, in both the
Java game, and the Shockwave animation, users specify
utility functions that span multiple categories. This shows
that different users have significantly different expectations
for the system.

As we will discuss in the next section, these observations
have an important effect on the modeling technique we use
for learning and predicting user satisfaction.

Overall, this motivational study indicates that

• Hardware counter have a strong correlation with user
satisfaction;

• The individual user is the most important factor in
determining user satisfaction;

• The relation between hardware performance and user
satisfaction is often non-linear; and

• User satisfaction is both application dependent and
user dependent.

Based on these observations, we design, implement, and
evaluate a DVFS scheme that is based on individual user
preferences.

5. Predictive User-Aware Power Management

Based on the initial user study results presented in Section
4, we develop a power management scheme that sets the
frequency of the processor based on estimates of user
satisfaction. This section presents this predictive user-aware
power management scheme, called Individualized Dynamic

Frequency and Voltage Scaling (iDVFS). To implement
iDVFS, we have built a system that is capable of predicting

User-aware

performance

prediction model

Predictive user-aware

Dynamic Frequency

Scaling

Building correlation

network based on

counters stats and user

feedback

Learning/Modeling Stage

Runtime Power Management

Hardware counter

states

Hardware counter

states

User Satisfaction

Feedback

a user’s satisfaction based on interaction with the system.
The framework can be divided into two main stages as
depicted in Figure 1:

Learning Stage – The system is initially trained based on
reported user satisfaction levels and HPC statistics as
described in Section 4. Machine learning models,
specifically artificial neural networks, are trained offline to
learn the function from HPC values to user satisfaction.

Runtime Power Management – Before execution, the
learned model is loaded by the system. During run time, the
HPC values are sampled, entered into the predictive model,
and then the predicted user satisfaction is used to
dynamically set the processor frequency.

5.1 Learning Stage

In its learning stage, our algorithm builds a predictive
model based on individual user preferences. The model
estimates user satisfaction from the HPCs. In this stage, the
user is asked to give feedback (user satisfaction level) while
the processor is set to run at different frequency levels. The
nature of this training stage is similar to the user study
described in Sections 3 and 4. Note that the user study and
its survey are repeated for each application. While a user
study runs, the nine performance counters are collected and
the 45 statistical metrics computed from them are extracted.
The combination of these values and the user feedback are
used to build the model that will later be used online.

5.1.1 Predictive Model Building

The learning stage helps us gather data that associates an
individual user’s satisfaction with different hardware
performance counter readings and statistics. These
instances are then used to build a predictive model that
estimates the satisfaction of a particular user from the
HPCs. We use neural networks to learn this model. We
have also experimented with regression models and
decision trees, but the neural networks provided the highest
accuracy.

An artificial neural network (NN) is an interconnected
group of artificial neurons that uses a mathematical or
computational model for information processing based on a
connectionist approach to computation. A NN maps a set of
p input variables x1,…,xp to a set of q response variables
y1,…,yq. It works by simulating a large number of
interconnected simple analog processing units that resemble
abstract versions of a neuron. Each processing unit (or
neuron) computes a weighted sum of its input variables.
The weighted sum is then passed through the sigmoid
function to produce the units output. We use a three-layer
NN model with one input layer, one hidden layer, and one
output layer. The well-known Backpropagation algorithm is
used to train the neural network from instance data. In the
Backpropagation algorithm, the weights between the
neurons begin as random values. During the learning phase,
training inputs are provided to the NN and the associated
output errors are used to adjust neuron weight functions to
reduce error.

Our experiments represent a very interesting case for
machine learning. Typically, machine learning algorithms
are extensively trained using very large data sets (e.g.,
thousands of labeled training inputs). We would like to use
NNs for their ability to learn complex non-linear functions,
but do not have a very large data set. For each application-
user pair, we only have six training inputs; one for each
processor frequency. A training input consists of a set of
HPC statistics and a user-provided satisfaction label. When
we first began building NN models with all 45 inputs (9
HPC counters with 5 statistics each), we noticed that our
models were overly conservative, only predicting
satisfaction ratings within a narrow band of values. We
used two training enhancements to permit the construction
of accurate NN models. First, we simplified the NN by
limiting the number of inputs. Large NNs require large
amounts of training data to sufficiently learn the weights
between neurons. To simplify the NN, we used the two
counters that had the highest correlation, specifically
PAPI_BTAC_M-avg and PAPI_TOT_CYC-avg (as shown
in Appendix A). Second, we repeatedly created and trained
multiple NNs, each beginning with different random
weights. After 30 seconds of repeated trainings, we used the
most accurate NN model. These two design decisions were
important in allowing us to build accurate NN models.

5.2 Counter-Based Frequency Control Algorithm

iDVFS uses NN models to determine the frequency level.
The decision is governed by the following variables: f, the
current CPU frequency; µUS, the user satisfaction prediction
for the last 500 ms of execution as predicted by the NN
model; ρ, the satisfaction tradeoff threshold; αf, a per-
frequency threshold for limiting the decrease of frequency
from the current f; M, the maximum user comfort level; and
Ti, the time period for re-initialization.

iDVFS employs a greedy approach to determine the
operating frequency. At each interval, if µUS is within αf ρ of
M, iDVFS predicts that the frequency is in a satisfactory
state. If µUS-1, the previously predicted user comfort, is also
within αf ρ of M, the system determines that it may be good
to decrease the processor frequency; if not, then the system
maintains the current frequency. If µUS is not within αf ρ of
M, then the system determines that the current performance
is not satisfactory and increases the operating frequency.
iDVFS uses the αf thresholds as a hysteresis mechanism to
eliminate the ping-pong effect between two states. If the
processor rapidly switches between two states N times in a
short time interval, the appropriate αf threshold is decreased
to make it harder to decrease to the lower frequency level.
This feature of the algorithm ensures that iDVFS can adjust
to a set of operating conditions very different from those
present at initialization but at a rate that is maximally
bounded by Ti. The constant parameters (ρ = .15, N = 3, Ti
= 20 seconds) were set based on the experience of the
authors using the system. αf thresholds are initialized to one
for each of the frequency level and is decremented by 0.1 at
each frequency boost.

0

500

1000

1500

2000

2500

1 41 81 121

C
P

U
 F

re
q

u
e
n
c
y
 [

M
H

z]

Time [Seconds]

iDVFS Windows

0

500

1000

1500

2000

2500

1 41

C
P

U
 F

re
q

u
e
n
c
y
 [

M
H

z]

Time [Seconds]

iDVFS Windows

(a) (b)

Figure 2. Frequency traces using iDVFS and Windows XP DVFS schemes for (a) Java Game and (b) Video.

Ideally, we would like to empirically evaluate the
sensitivity of iDVFS performance to the selected
parameters. However, it is important to note that any such
study would require having real users in the loop, and thus
would be slow. Testing four values of four parameters on
20 users would require 256 days (based on 20 users/day and
25 minutes/user). For this reason, we decided to choose the
parameters based on qualitative evaluation by the authors
and then “close the loop” by evaluating the whole system
with the choices.

Figure 2 illustrates the performance of the iDVFS
algorithm for two of the three applications in our study.
Each graph shows, as a function of time, the CPU frequency
for a randomly-selected user when playing the Java Game
and watching the Video. First, note that the frequency
transitions in the two example traces differ greatly from the
decisions that Windows XP DVFS makes. The reason is
that Windows XP DVFS alters frequency based upon CPU
utilization while iDVFS alters frequency based upon
predicted user satisfaction. iDVFS reduces the frequency
significantly in the Video application. In this case, the user
has indicated high satisfaction with all levels of
performance. As shown in Table 2, the Video has the least
variation in user satisfaction values at lower frequencies. As
a result the iDVFS algorithm can reduce CPU frequency
without affecting user satisfaction. In both cases, the
frequency level follows the satisfaction levels reported by
the user and minimizes power consumption with little
impact on satisfaction. These traces show that iDVFS can
successfully adjust the clock frequency throttle according to
the user satisfaction derived from the HPCs. For a highly
compute-intensive application (such as the Java Game), the
reduction in the frequency is minimal because any change
in frequency causes a significant reduction in user-
perceived performance. For other applications (such as the
Video), frequency can be drastically reduced without
affecting user satisfaction.

5.3 Implementation, Integration, and Limitations

Currently, we have not integrated iDVFS with the
operating system (OS). Instead, we have implemented client
software that runs as a Windows toolbar task, and manually
activate iDVFS for our user studies. The client is
implemented in a manner that is similar to profile-directed
optimization. An initial calibration stage is used for

building a model that is used to predict user satisfaction
during run time. The current implementation requires direct
user feedback in a calibration stage for each user and each
application. While this may be cumbersome, there are two
points we would like to make. First, we believe that the
current system is practical for some users (e.g., heavy
gamers will not mind a few minutes of calibration). Second,
we argue that explicit user feedback is a viable option.
Future work in limiting the feedback and learning
effectively from explicit/implicit mechanisms will allow
such schemes to be deployed widely.

iDVFS has a few limitations that will be eliminated once
it is integrated into the OS. First, we provide the client
software with per-user, per-application neural network
models tailored to the application we are about to invoke.
Second, iDVFS is currently only intended for interactive
applications. The OS has knowledge of users, as well as
active applications, and could automatically load the
appropriate prediction models for interactive applications
during context switches.

WinPAPI only supports system-wide HPC sampling; this
includes other programs, background processes, and kernel
execution. For our work, we run a single workload on the
machine at a time; hence HPC samples correlate to the
workload directly. Ideally, the HPC interface would include
thread-specific information as well as distinguish between
user level and kernel level applications. Other HPC
interfaces (i.e., perfmon2 for Linux [4]) also include this
support.

The performance of iDVFS is largely dependent upon
good user input. While this may be a limitation for a current
user and application, the user is free to provide new ratings
and recalibrate iDVFS if the resulting control mechanism
causes dissatisfaction.

6. Experimental Results

In this section, we evaluate the predictive user-aware
power management scheme with a user study, as described
in Section 3. We compare iDVFS with the native Windows
XP DVFS scheme and report reductions in CPU dynamic
power, as well as changes in measured user satisfaction.
This is followed by a trade-off analysis between user
satisfaction and system power reduction. We report the
effect of iDVFS on the power consumption and user
satisfaction.

We compare iDVFS to Windows Adaptive DVFS, which
determines the frequency largely based on CPU usage level.
A burst of computation due to, for example, a mouse or
keyboard event brings utilization quickly up to 100% and
drives frequency, voltage, power consumption, and
temperature up along with it. CPU-intensive applications
cause an almost instant increase in operating frequency and
voltage regardless of whether this change will impact user
satisfaction. Windows XP DVFS uses six of the frequency
states in the Enhanced Intel Speedstep technology, as
mentioned in Section 3. Performance requirements are
determined using heuristics based on metrics “such as
processor utilization, current battery level, use of processor
idle states, and inrush current events” [11]. In the Windows
native adaptive DVFS scheme, decisions are made
according to the algorithm described in Figure 3. We note
that this is our best interpretation of the DVFS algorithm
described in [11].

Figure 3. Windows XP DVFS Algorithm

6.1 Analysis of User Satisfaction and Power
Measurements

To analyze the effect of iDVFS on system power
consumption, we perform a second set of user studies in
which the users are asked to carry out the tasks described in
Section 3. This time, the durations of the applications are
increased: the Java Game is executed for 2.5 minutes;
Shockwave and Video are executed for 1.5 minutes each.
The user is asked to execute the application twice, once for
Windows XP DVFS and once for iDVFS, which loads the
individual neural network model for the user/application
before the start of the execution. Once the execution
completes, the users are asked to rate their satisfaction with
each of the systems on a scale of 1 (very dissatisfied) to 5
(very satisfied).

During these experiments, we log the frequency over
time. We use these frequency logs to derive CPU power
savings for iDVFS compared to the default Windows XP
DVFS strategy. We have also measured the online power
consumption of the entire system, and provide a detailed
discussion and analysis of trade-offs between power
consumption and user satisfaction.

6.1.1 Dynamic Power Consumption and User
Satisfaction

The dynamic power consumption of a processor is
directly related to frequency and supply voltage and can be
expressed using the formula P = V

2
CF, which states that

power is equal to the product of voltage squared,
capacitance, and frequency. By using the frequency traces
and the nominal voltage levels on our target processor [16],
we calculated the relative dynamic power consumption of
the processor. Figure 4 presents the CPU dynamic power
reduction achieved by the iDVFS algorithm compared to
the Windows XP DVFS algorithm for the individual users
for each application. It also presents their reported
satisfaction levels. To understand the figure, consider a
group of three bars for a particular user. The first two bars
represent the satisfaction levels for the users for the iDVFS
(gray) and Windows (white) schemes, respectively. The
third bar (black) shows the power saved by iDVFS for that
application compared to the Windows XP DVFS scheme
(for which the scale is on the right of the figure).

On average, our scheme reduces the power consumption
by 8.0% (Java Game), 27.9% (Shockwave), and 45.4%
(Video) compared to the Windows XP DVFS scheme. A
one-sample t-test of the iDVFS power savings shows that
for Shockwave and Video, iDVFS decreases dynamic
power with over 95% confidence. For the Java game, there
are no statistically-significant power savings.
Correspondingly, the average user satisfaction level is
reduced by 8.5% (Java Game), 17.0% (Shockwave), and
remains the same for Video. A two-sample paired t-test
comparing the user satisfaction ratings from iDVFS and
Windows XP DVFS indicates that for Java and Video, there
is no statistical difference in user satisfaction when using
iDVFS. For Shockwave, we reduce user satisfaction with
over 95% confidence

The combined results show that for Java, iDVFS is no
different than Windows XP DVFS, for Shockwave, iDVFS
trades off a decrease in user satisfaction for a decrease in
power consumption, and for the Video, iDVFS significantly
decreases power consumption while maintaining user
satisfaction.

An analysis of the results quickly reveals that the average
satisfaction levels are strongly influenced by a few
exceptional cases. We have analyzed the cases where there
is a difference of more than 1 step between the user ratings.
Among these, we found six cases that require special
attention. For the Java Game, the training inputs of Users 3,
6, and 13 (solid rectangles in Figure 4) significantly
mismatched the performance levels of the processor.
Specifically, these users have given their highest ratings to
one of the lowest frequency levels. As a result, iDVFS
performs as the user asks and reduces the frequency,
causing dissatisfaction to the user. The cause of
dissatisfaction for User 4 (dotted rectangle in Figure 4) was
different. Our neural network for that user did not match the
training ratings and thus the user was dissatisfied. Similarly,
for the Shockwave application, Users 6 and 10 (dashed

IF 150 ms have passed since the last frequency

 state adjustment

 AND Performance has increased by 20% since

 the last evaluation

 Increase f by one level within the next
 10 ms

IF 500 ms have passed since the last frequency

 state adjustment

 AND Performance has decreased by 30% since

 the last evaluation

 AND A decrease of frequency state by one

 operating point will remain

 above 50% of the maximum frequency state

 Decrease f by one level within the next
 10 ms

(a) Java Game.

(b) Shockwave animation.

(c) Video.

Figure 4. User satisfaction and dynamic power reduction for iDVFS compared to the Windows XP DVFS scheme.

In the graphs, the individual users are plotted on the horizontal axis. The left vertical axis reflects the reported

satisfaction for iDVFS and Windows XP DVFS, and the right vertical axis report the percentage reduction in

dynamic power of iDVFS compared to Windows XP DVFS.

 -60

-40

-20

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 MeanIm
p

ro
ve

m
en

t
[%

]

System Energy Reduction Increase in User Satisfaction Increase in Energy-Satisfaction Product

Figure 5. Improvement in energy consumption, user satisfaction, and energy-satisfaction product for the

Shockwave application.

Figure 6. System Power Measurement Setup.

rectangle in Figure 4) provided a roughly constant user
satisfaction across the various frequencies. During the user
study, however, these Shockwave users highlighted their
dissatisfaction when they were able to compare the
performance of iDVFS to the Windows scheme, which
keeps the processor at the highest frequency at all times

It is important to note that such exceptional cases are rare;
only 10% of the cases (6 out of 60) fall into this category.
Such exceptional cases can be easily captured during a
learning phase and eliminated by forcing the user to retake
the survey and re-train the model, i.e., training can be
repeated until successful. In addition, any dissatisfied user
can retrain until a satisfactory performance level is reached.
However, our results reveal that such cases will be rare.

1

User 16’s results are likely to be caused by noise and
provide a good example of the intricacies of dealing with
real users. This user rated iDVFS two steps lower than the
Windows scheme for Shockwave. At the same time, he/she
rated iDVFS two grades higher for the Java Game
application even though iDVFS used a lower frequency
throughout execution.

Overall, these initial results provide strong evidence that a
highly-effective individualized power management system
can be developed. Specifically, the results from our user
study reveal that

• There exist applications (e.g., Video), for which
providing customized performance can result in
significant power savings without impacting user
satisfaction;

• There exist applications (e.g., Shockwave), for which
the users can trade off satisfaction level with power
savings. In fact, in the next section, we provide an
analysis of such trade-offs; and

• There exist applications (e.g., Java Game), for which
traditional metrics in determining the satisfaction is
good and iDVFS will provide the same performance
level and user satisfaction.

1 We also analyzed the performance of iDVFS without considering these

extreme cases. Overall, iDVFS reduces power consumption by 5.2% (Java
Game), 24.0% (Shockwave), and 45.4% (Video). User satisfaction levels
were increased by 4.8% (Java Game), reduced by 13.9% (Shockwave),
and remained identical for Video (where there are no exceptional cases).

6.1.2 Total System Power and Energy-Satisfaction
Trade Off

In the previous section, we have presented experimental
results indicating the user satisfaction and the power
consumption for three applications. For two applications
(Video and the Java Game), we concluded that the iDVFS
users are at least as satisfied as Windows XP DVFS users.
However, for the Shockwave application, we observed that
although the power consumption is reduced, this is achieved
at the cost of a statistically significant reduction in average
user satisfaction. Therefore, a designer needs to be able to
evaluate the success of the overall system. To analyze this
trade-off, we developed a new metric called the energy-

satisfaction product (ESP) that works in a similar fashion to
popular metrics such as energy-delay product. Specifically,
for any system, the ESP per user/application can be found
by multiplying the energy consumption with the reported
satisfaction level of the user.

Clearly, to make a fair comparison using the ESP metric,
we have to collect the total system energy consumption
during the run of the application. To extract these values,
we replay the traces from the user studies of the previous
section. The laptop is connected to a National Instruments
6034E data acquisition board attached to the PCI bus of a
host workstation running Windows (and the target
applications), which permits us to measure the power
consumption of the entire laptop (including other power
consuming components such as memory, screen, hard disk,
etc.). The sampling rate is set to 10 Hz. Figure 6 illustrates
the experimental setup used to measure the system power.

Once the system energy measurements are collected (for
both Windows XP DVFS and iDVFS), we find the ESP for
each user by multiplying their reported satisfaction levels
and the total system energy consumption. The results of this
analysis are presented in Figure 5. In this figure, we present
the reduction in system energy consumption, increase in
user satisfaction, and change in ESP for each user. Hence,
the higher numbers correspond to improvement in each
metric, whereas negative numbers mean that the Windows
XP DVFS scheme performed better. Although the ESP
improvement varies from user to user, we see that iDVFS
improves the ESP product by 2.7%, averaged over all users.
As a result, we can conclude that Windows XP DVFS and
iDVFS provide comparable ESP levels for this particular
application. In other words, the reduction in user
satisfaction is offset at a significant benefit in terms of
power savings.

7. Related Work

Dynamic voltage and frequency scaling (DVFS) is an
effective technique for microprocessor energy and power
control for most modern processors [8, 16]. Energy
efficiency has traditionally been a major concern for mobile
computers. Fei, Zhong and Ya [14] propose an energy-
aware dynamic software management framework that
improves battery utilization for mobile computers.
However, this technique is only applicable to highly-

adaptive mobile applications. Researchers have proposed
algorithms based on workload decomposition [10], but
these tend to provide power improvements only for
memory-bound applications. Wu et al. [26] present a design
framework for a run-time DVFS optimizer in a general
dynamic compilation system. The Razor [13] architecture
dynamically finds the minimal reliable voltage level. Dhar,
Maksimovic, and Kranzen [12] propose an adaptive
voltage scaling technique that uses a closed-loop controller
targeted towards standard-cell ASICs. Intel Foxton
technology [19] provides a mechanism for select Intel
Itanium 2 processors to adjust core frequency during
operation to boost application performance. To the best of
our knowledge, none of the previous DVFS techniques
consider the user satisfaction prediction.

Other DVFS algorithms use task information, such as
measured response times in interactive applications [21, 23,
28] as a proxy for the user. Vertigo [15] monitors
application messages and can be used to perform the
optimizations implemented in our study (although to the
best of our knowledge this has not been studied). However,
compared to Vertigo, our approach provides a
metric/framework that is much easier to use. Xu, Ross, and
Melhem propose novel schemes [27] minimizing energy
consumption in real-time embedded systems that execute
variable workloads. However, they try to adapt to the
variability of the workload rather than to the users. Gupta,
Lin, and Dinda [17], and Lin and Dinda [20] demonstrate
a high variation in user tolerance for performance in the
scheduling context, variation that we believe holds for
power management as well.

Mallik et al. [23, 24] show that it is possible to utilize user
feedback to control a power management scheme, i.e.,
allow the user to control the performance of the processor
directly. However, their system requires constant feedback
from the user. Our scheme correlates user satisfaction with
low level microarchitectural metrics. In addition, we use a
learning mechanism to eliminate user feedback to make
long-term feedback unnecessary. Anand, Nightingale, and
Flinn [5] discuss the concept of a control parameter that
could be used by the user. However, they focus on the
wireless networking domain, not the CPU. Second, they do
not propose or evaluate a user interface.

Sasaki et al. [25] propose a novel DVFS method based on
statistical analysis of performance counters. However, their
technique needs compiler support to insert code for
performance prediction. Furthermore, their technique does
not consider user satisfaction while setting the frequency.
The primary contribution of our work is to establish the
correlation between hardware counters and user satisfaction
and utilize this correlation to develop a user-aware DVFS
technique.

8. Conclusion

Through extensive user studies, we have demonstrated
that there is a strong, albeit usually nonlinear, link between
low-level microarchitectural performance metrics, as

measured by hardware performance counters (i.e., “close to
the metal” numbers), and user satisfaction (i.e., “close to
the flesh” numbers) for interactive applications. More
importantly, we show that the link is highly user-dependent.
This variation in user satisfaction indicates potential for
optimization. Using neural networks, we learn per-user per-
application functions (which might be called “metal to flesh
functions”) that map from the hardware performance
counters to individual user satisfaction levels. This result in
a computer system that can uses small amounts of explicit
user feedback, and then implicitly learns from the feedback
to make online predictions of user satisfaction. We
demonstrate the utility of this implicit feedback by
employing it in a user-aware DVFS algorithm.
Experimental results, and analysis of user studies, show that
there are interactive applications for which knowledge of
user satisfaction permits power consumption savings.
Others present an interesting trade-off between user
satisfaction and power savings. Overall, our system reduces
the power consumption of Windows XP DVFS by over
25%, while only affecting user satisfaction in one
application.

9. Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments. We are also very grateful to the many
users who volunteered their time for the user studies in this
paper. This work is in part supported by DOE Awards DE-
FG02-05ER25691 and DE-AC05-00OR22725 (via ORNL),
NSF Awards CNS-0720691, CNS-0721978, CNS-0715612,
CNS-0551639, CNS-0347941, CCF-0541337, CCF-
0444405, CCF-0747201, IIS-0536994, IIS-0613568, ANI-
0093221, ANI-0301108, and EIA-0224449, by SRC award
2007-HJ-1593, by Wissner-Slivka Chair funds, and by gifts
from Symantec, Dell, and VMware.

10. References

[1]. BIOS and Kernel Developer's Guide for AMD Athlon64 and

AMD Opteron Processors. 2006, AMD.

[2]. Intel Itanium 2 Processor Reference Manual: For Software

Development and Optimization. 2004, Intel Corporation.

[3]. Intel® 64 and IA-32 Architectures Software Developer's

Manual Volume 3A: System Programming Guide. 2007,

Intel Corporation.

[4]. perfmon2: the hardware-based performance monitoring

interface for Linux: http://perfmon2.sourceforge.net/.

[5]. Anand, M., E. Nightingale, and J. Flinn, Self-tuning Wireless

Network Power Management, in The Ninth Annual

International Conference on Mobile Computing and

Networking (MobiCom'03). 2003: San Diego, California,

USA.

[6]. Anderson, J.M., L.M. Berc, J. Dean, S. Ghemawat, M.R.

Henzinger, S.-T.A. Leung, R.L. Sites, M.T. Vandevoorde,

C.A. Waldspurger, and W.E. Weihl, Continuous Profiling:

Where Have All the Cycles Gone? 1997, Digital Equipment

Corporation Systems Research Center.

[7]. Azimi, R., M. Stumm, and R.W. Wisniewski, Online

Performance Analysis by Statistical Sampling of

Microprocessor Performance Counters. International

Conference on Supercomputing, 2005.

[8]. Brock, B. and K. Rajamani. Dynamic Power Management for

Embedded Systems. in Proceedings of the IEEE SOC

Conference. 2003. Portland, Oregon, USA.

[9]. Browne, S., J. Dongarra, N. Garner, G. Ho, and P. Mucci, A

Portable Programming Interface for Performance

Evaluation on Modern Processors. The International

Journal of High Performance Computing Applications,

2000. 14(3): p. 189-204.

[10]. Choi, K., R. Soma, and M. Pedram, Dynamic Voltage and

Frequency Scaling based on Workload Decomposition.

Proceedings of The 2004 International Symposium on Low

Power Electronics and Design (ISLPED '04), 2004: p. 174-

179.

[11]. Corporation, M., Windows Native Processor Performance

Control, in Windows Platform Design Notes. 2002,

Microsoft Corporation.

[12]. Dhar, S., D. Maksimovic, and B. Kranzen, ClosedLoop

Adaptive Voltage Scaling Controller For Standard Cell

ASICs. Proceedings of The International Symposium on

Low Power Electronics and Design (ISLPED) 2005: p. 251-

254.

[13]. Ernst, D., N.S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C.

Ziesler, D. Blaauw, T. Austin, and T. Mudge, Razor: A Low-

Power Pipeline Based on Circuit-Level Timing Speculation.

ACM/IEEE International Symposium on Microarchitecture

(MICRO), 2003.

[14]. Fei, Y., L. Zhong, and N.K. Jha, An Energy-aware

Framework for Coordinated Dynamic Software

Management in Mobile Computers. IEEE/ACM Int. Symp.

on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2004.

[15]. Flautner, K. and T. Mudge, Vertigo: Automatic

Performance-Setting for Linux. Proceedings of the 5th

Symposium on Operating Systems Design and

Implementation (OSDI), 2002.

[16]. Gochman, S. and R. Ronen, The Intel Pentium M Processor:

Microarchitecture and Performance. Intel Technology

Journal, 2003.

[17]. Gupta, A., B. Lin, and P.A. Dinda, Measuring and

Understanding User Comfort with Resource Borrowing.

Proceedings of the 13th IEEE International Symposium on

High Performance Distributed Computing (HPDC 2004),

2004.

[18]. Intel, I., Intel Itanium 2 Processor at 1.0 GHz and 900 MHz

Datasheet. July 2002.

[19]. John Wei. Foxton Technology Pushes Processor Frequency,

Application Performance.

[20]. Lin, B. and P. Dinda, Putting the user in direct Control of

CPU Scheduling. The 15th IEEE International Symposium

on High Performance Distributed Computing (HPDC),

2006.

[21]. Lorch, J. and A. Smith, Using User Interface Event

Information in Dynamic Voltage Scaling Algorithms.

Technical Report UCB/CSD-02-1190, Computer Science

Division, EECS, University of California at Berkeley,

August 2002., 2002.

[22]. Lu, J., H. Chen, P.-C. Yew, and W.-C. Hsu, Design and

Implementation of a Lightweight Dynamic Optimization

System. Journal of Instruction-Level Parallelism, 2004. 6.

[23]. Mallik, A., J. Cosgrove, R.P. Dick, G. Memik, and P. Dinda.

PICSEL: Measuring User-Perceived Performance to

Control Dynamic Frequency Scaling. in the International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-2008) 2008.

[24]. Mallik, A., B. Lin, G. Memik, P. Dinda, and R.P. Dick,

User-Driven Frequency Scaling. IEEE Computer

Architecture Letters, 2006. 5(2): p. 16.

[25]. Sasaki, H., Y. Ikeda, M. Kondo, and H. Nakamura. An intra-

task DVFS technique based on statistical analysis of

hardware events in Proceedings of the 4th international

conference on Computing frontiers 2007

[26]. Wu, Q., V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks,

M. Martonosi, and D.W. Clark, Dynamic Compilation

Framework for Controlling Microprocessor Energy and

Performance. 38th International Symposium on

Microarchitecture (MICRO-38), 2005.

[27]. Xu, R., D. Moss, and R. Melhem, Minimizing Expected

Energy in Real-time Embedded Systems. Proceedings of the

5th ACM international conference on Embedded

software(EMSOFT), 2005: p. 251-254.

[28]. Yan, L., L. Zhong, and N.K. Jha, User-perceived Latency

based Dynamic Voltage Scaling for Interactive

Applications. Proceedings of ACM/IEEE Design

Automation Conference (DAC '05), 2005.

Appendix A

Table 3 presents the correlation between 45 metrics based
on hardware counter readings. Please see Section 4 on
details of the calculation of these correlation factors.

Table 3. Correlation between the hardware performance counters and user satisfaction

Performance Metrics Correlation Performance Metrics Correlation Performance Metrics Correlation

PAPI_BTAC_M-avg 0.771 PAPI_RES_STL-max 0.738 PAPI_TOT_INS-range 0.625

PAPI_L1_ICA-avg 0.770 PAPI_BTAC_M-max 0.733 PAPI_TOT_INS-min 0.603

PAPI_L1_ICA-stdev 0.770 PAPI_TOT_INS-max 0.729 PAPI_L1_DCA-min 0.528

PAPI_BTAC_M-stdev 0.770 PAPI_L2_TCM-avg 0.722 PAPI_L2_TCM-max 0.525

PAPI_L1_DCA-stdev 0.768 PAPI_L1_DCA-range 0.721 PAPI_BR_MSP-min 0.503

PAPI_TOT_INS-avg 0.768 PAPI_L2_TCM-stdev 0.709 PAPI_L2_TCM-range 0.497

PAPI_TOT_CYC-avg 0.767 PAPI_RES_STL-min 0.694 PAPI_L2_TCM-min 0.495

PAPI_L1_DCA-max 0.767 PAPI_TOT_CYC-min 0.689 PAPI_BR_MSP-max 0.379

PAPI_TOT_CYC-stdev 0.767 PAPI_RES_STL-range 0.684 PAPI_BR_MSP-range 0.360

PAPI_TOT_INS-stdev 0.766 PAPI_L1_ICA-min 0.682 PAPI_BTAC_M-min 0.289

PAPI_L1_DCA-avg 0.766 PAPI_L1_ICA-range 0.675 PAPI_HW_INT-max 0.131

PAPI_RES_STL-avg 0.761 PAPI_BR_MSP-avg 0.662 PAPI_HW_INT-range 0.119

PAPI_RES_STL-stdev 0.761 PAPI_BTAC_M-range 0.653 PAPI_HW_INT-min 0.112

PAPI_TOT_CYC-max 0.756 PAPI_TOT_CYC-range 0.644 PAPI_HW_INT-stdev 0.094

PAPI_L1_ICA-max 0.749 PAPI_BR_MSP-stdev 0.638 PAPI_HW_INT-avg 0.048

