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Abstract 

The ultimate goal of computer design is to satisfy the end-

user. In particular computing domains, such as interactive 

applications, there exists a variation in user expectations 

and user satisfaction relative to the performance of existing 

computer systems. In this work, we leverage this variation 

to develop more efficient architectures that are customized 

to end-users. We first investigate the relationship between 

microarchitectural parameters and user satisfaction. 

Specifically, we analyze the relationship between hardware 

performance counter (HPC) readings and individual 

satisfaction levels reported by users for representative 

applications. Our results show that the satisfaction of the 

user is strongly correlated to the performance of the 

underlying hardware. More importantly, the results show 

that user satisfaction is highly user-dependent. To take 

advantage of these observations, we develop a framework 

called Individualized Dynamic Voltage and Frequency 

Scaling (iDVFS). We study a group of users to characterize 

the relationship between the HPCs and individual user 

satisfaction levels. Based on this analysis, we use artificial 

neural networks to model the function from HPCs to user 

satisfaction for individual users. This model is then used 

online to predict user satisfaction and set the frequency 

level accordingly. A second set of user studies 

demonstrates that iDVFS reduces the CPU power 

consumption by over 25% in representative applications as 

compared to the Windows XP DVFS algorithm. 

1. Introduction  

Any architectural optimization (performance, power, 
reliability, security, etc.) ultimately aims at satisfying the 
end-user. However, understanding the happiness of the user 
during the run of an application is complicated. Although it 
may be possible to query the user frequently, such explicit 
interaction will annoy most users. Therefore, it would be 
beneficial to estimate user satisfaction using implicit 
metrics. Traditionally, computer architects have used 
implicit metrics such as instructions retired per second 
(IPS), processor frequency, or the instructions per cycle 
(IPC) as optimization objectives. The assumption behind 
these metrics is that they relate in a simple way to the 
satisfaction of the user. When two systems are compared, it 
is assumed, for example, that the system providing a higher 
IPS will result in higher user satisfaction. For some 
application domains, this assumption is generally correct. 
For example, the execution time of a long running batch 

application is largely determined by the IPS of the 
processor. Hence, increasing IPS will result in an increase 
in user satisfaction. However, in this paper we show that the 
relationship between hardware performance and user 
satisfaction is complex for interactive applications and an 
increase in a metric like IPS does not necessarily result in 
an increase in user satisfaction. More importantly, we show 
that the relationship between hardware performance and 
user satisfaction is highly user-dependent. Hence, we 
explore the feasibility of estimating individual user 
satisfaction from hardware metrics, develop accurate non-
linear models to do so, and use these models for run-time 
power management.  

Driving architectural decisions from estimates of user 
satisfaction has several advantages. First, user satisfaction is 
highly user-dependent. This observation is not surprising. 
For example, an expert gamer will likely demand 
considerably more computational power than a novice user. 
In addition, each user has a certain “taste”; for example, 
some users prefer to prolong battery life, while others prefer 
higher performance. If we know the individual user’s 
satisfaction with minimal perturbation of program 
execution, we will be able to provide a better experience for 
the user. Second, when a system optimizes for user 
satisfaction, it will automatically customize for each 
application. Specifically, a system that knows the user’s 
satisfaction with a given application will provide the 
necessary performance to the user. For interactive 
applications, this may result in significant advantages such 
as power savings or increased lifetime reliability. For 
example, one of our target applications exhibits no 
observable change in performance when the frequency of 
the processor is set to its lowest level. In this case, our 
system drastically reduces the power consumption 
compared to traditional approaches without sacrificing user 
satisfaction. 

Ultimately, our goal is to map microarchitectural 
information to user satisfaction. Such a map can then be 
used to understand how changes in microarchitectural 
metrics affect user satisfaction. Modern microprocessors 
contain integrated hardware performance counters (HPCs) 
that count architectural events (e.g., cache misses) as well 
as a variety of events related to memory and operating 
system behavior [1-3]. In this work, we aim at finding a 
mapping from the HPC readings to user satisfaction. We 
first show that there is a strong correlation between the 
HPCs and user satisfaction. However, the relationship 
between the two is often non-linear and user-dependent. 



A good estimate of user satisfaction derived from 
microarchitectural metrics can be used to minimize power 
consumption while keeping users satisfied. Although 
utilizing user satisfaction in making architectural decisions 
can be employed in many scenarios, in this work, we focus 
on dynamic voltage and frequency scaling (DVFS) [8], 
which is one of the most commonly used power reduction 
techniques in modern processors. DVFS make decisions 
online to change microprocessor frequency and voltage 
according to processing needs. Existing DVFS techniques 
in high-performance processors select an operating point 
(CPU frequency and voltage) based on the utilization of the 
processor. Like many other architectural optimizations, 
DVFS is pessimistic about user satisfaction and assumes 
that the maximum processor frequency is necessary for 
every process that has a high CPU utilization. We show that 
incorporating user satisfaction into the decision making 
process can improve the power reduction yielded by DVFS. 
Specifically, our contributions in this work follow: 

• We unveil a strong relationship between HPCs and 
user satisfaction for interactive applications; 

• We show that this relationship is often non-linear, 
complex, and highly user-dependent; 

• We show that individual user satisfaction can be 
accurately predicted using neural network models; 

• We design Individualized Dynamic Voltage and 

Frequency Scaling (iDVFS), which employs user 
satisfaction prediction in making decisions about the 
frequency of the processor; and 

• We implement and evaluate iDVFS on Windows with 
user studies that show it reduces power consumption 
compared to Window DVFS.  

The paper is organized as follows. In Section 2, we give 
an introduction to hardware counters. Section 3 describes 
our user study process. Section 4 presents results showing 
the relationship between user satisfaction and hardware 
counters. The predictive user-aware power management 
scheme is described in Section 5. Section 6 presents the 
results obtained from user studies. We compare our work 
with previous studies in Section 7. Section 8 summarizes 
our contributions. 

2. Hardware Performance Counters  

Modern microprocessors include integrated hardware 
performance counters (HPC) for non-intrusive monitoring 
of a variety of processor and memory system events [1-3]. 
HPCs provide low-overhead access to a wealth of detailed 
performance information related to CPU's functional units, 
caches, main memory, etc. Even though this information is 
generally statistical in nature, it does provide a window into 
certain behaviors that are otherwise impractical to observe. 
For instance, these events include various counts of 
instructions, cache activity, branch mispredictions, memory 
coherence operations, and functional unit usage. Several 
tools and microprocessors have extended this functionality 
beyond simple event counting. For example, Intel's Itanium 
processors [2, 18] have features that allow monitoring 

specific events based on an instruction or data address 
range, a specific instruction opcode, or execution at specific 
privilege levels.  

Current microprocessors support a limited number of 
HPCs. For example, the IA-64 architectures only support 
counting four events at a time [2]. In our experiments, we 
use the Pentium M processor which only supports two 
counters at a time. As a result, it is not possible to collect all 
hardware information simultaneously. One workaround is to 
time multiplex sets of counters and then scale the values 
appropriately. Azimi, Stum, and Wisniewski [7] show that 
time multiplexing up to 10 sets of counters provides 
statistically significant counter values. Despite this 
limitation, the low-overhead access to low-level 
architectural information provided by HPCs is very useful 
and is often leveraged in run-time profiling and 
optimization systems [6, 22].  

We use WinPAPI, the Windows variant of PAPI [9], to 
access the HPCs present in the processor. In our study we 
concentrate on the nine specific performance metrics listed 
in Table 1. These counters are manually selected as a 
representative set of the HPCs available on the Pentium M. 
The choice of using only nine counters is due to a WinPAPI 
limitation. We collect counter values every 100 ms. 
WinPAPI automatically time multiplexes and scales the 
nine event counters. 

 

Table 1. HPCs used in experiments. 
PAPI counter Description 

PAPI_TOT_INS Instructions issued 

PAPI_RES_STL Cycles stalled on any resource 

PAPI_TOT_CYC Total cycles 

PAPI_L2_TCM Level 2 cache misses 

PAPI_BTAC_M Branch target address cache misses 

PAPI_BR_MSP Conditional branches mispredicted 

PAPI_HW_INT Hardware interrupts 

PAPI_L1_DCA Level 1 data cache accesses 

PAPI_L1_ICA Level 1 instruction cache accesses 

3. User Study Setup  

To explore the relationships between different 
microarchitectural parameters and user satisfaction, we 
conduct two sets of studies with 20 users. Our experiments 
are done using an IBM Thinkpad T43p with a 2.13 GHz 
Pentium M-770 CPU and 1 GB memory running Microsoft 
Windows XP Professional SP2. The laptop is tethered to 
the power outlet during all experiments. Although eight 
different frequency levels can be set on the Pentium M-770 
processor, only six can be used due to limitations in the 
SpeedStep technology. For both user studies, we 
experiment with three types of applications: a 3D 
Shockwave animation, a Java game, and high-quality video 
playback. The details of these applications follow:  



• Shockwave: Watching a 3D Shockwave animation 
using the Microsoft Internet Explorer web browser. 
The user watches the animation and is encouraged to 
press the number keys to change the camera’s 
viewpoint. The animation is stored locally. 
Shockwave options are configured so that rendering is 
done entirely in software on the CPU. 

• Java Game: Playing a Java based First Person Shooter 
(FPS). The users have to move a tank and destroy 
different targets to complete a mission. The game is 
CPU-intensive. 

• Video: Watching a DVD quality video using 
Windows Media Player. The video uses high 
bandwidth MPEG-4 encoding. 

Since we target the CPU in this paper, we picked three 
applications with varying CPU requirements: the 
Shockwave animation is very CPU-intensive, the Video 
places a relatively low load on the CPU, and the Java game 
falls between these extremes.  

Our user studies are double-blind, randomized, and 
intervention-based. We developed a user pool by 
advertising our studies within Northwestern University. 
While many of the participants were CS, CE, or EE 
graduate students, our users included inexperienced 
computer users as well.  

4. User Satisfaction and Hardware Counters  

The primary objective of our first user study is to explore 
the correlation between HPCs and user satisfaction. The 
monitored hardware counters are listed in Table 1. In this 
first set of experiments, the users are asked to carry out the 
three application tasks as described in Section 3. During 
execution, we randomly change the frequency and ask the 
users to verbally rank their experience on a scale of 1 
(discomfort) to 10 (very comfortable). Users typically 
provided a satisfaction rating within 5-10 seconds. These 
satisfaction levels are then recorded along with the HPC 
readings and analyzed as described in the next section. 
Then we compute the maximum, minimum, average, range, 
and the standard deviation of the counter values for up to 5 
seconds within the given interval. The end result is a vector 
of 45 metrics for each satisfaction level reported by the 
user. Note that since we have performed the user studies 
with 20 users and three applications, we collected 360 user 
satisfaction levels.  

We then find the correlation of the 45 metrics to the user 
satisfaction rating by using the formula:  
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Pearson’s Product Moment Correlation Coefficient (r) is 
commonly used to find correlation among two data series (x 
and y) and results in a value between –1 and 1. If the 
correlation is negative, the series have negative 
relationship; if it's positive, the relationship is positive. The 
closer the coefficient is to either −1 or 1, the stronger the 
correlation between the variables. Thus, the magnitude of 

these correlations allows us to compare the relative value of 
each independent variable in the predicting the dependent 
variable.  

The correlation factors for each of the 45 parameters and 
the user rating are presented in Appendix A. In summary, 
we observe a strong correlation between the hardware 
metrics and user satisfaction rating: there are 21 parameters 
that correlate with the user satisfaction rating by a factor 
above 0.7 (all these 21 parameters have a factor ranging 
between 0.7 and 0.8) and there are 35 parameters with 
factors exceeding 0.5. On one hand, this result is intuitive; 
it is easy to believe that metrics representing processor 
performance relate to user satisfaction. On the other hand, 
observing the link between such a high-level quantity as 
measured user satisfaction and such low-level metrics as 
level 2 cache misses is intriguing.  

We classify the metrics (and their correlations with user 
satisfaction) based on their statistical nature (mean, 
maximum, minimum, standard deviation, and range). The 
mean and standard deviation of the hardware counter values 
have the highest correlation with user satisfaction rating. A 
t-test analysis shows with over 85% confidence that mean 
and standard deviation both have higher r values when 
compared to the minimum, maximum, and range of the 
HPC values.  

We analyze the correlations between the satisfaction 
results and user. Note that the r value cannot be used for 
this purpose, as the user numbers are not independent. 
Instead, we repeatedly fit neural networks to the data 
collected for each application, attempting to learn the 
overall mapping from HPCs to user satisfaction. As the 
inputs to the neural network, we use the HPC statistics 
along with a user identification for each set of statistics. 
The output is the self-reported user satisfaction rating. In 
each fitting, we begin with a three-layer neural network 
model using 50 neurons in the hidden layer (neural 
networks are described in more detail in Section 5.1.1). 
After each model is trained, we perform a sensitivity 
analysis to find the effect of each input on the output. 
Sensitivity analysis consists of making changes at each of 
the inputs of the neural network and observing the 
corresponding effect on the output. The sensitivity to an 
input parameter is measured on a 0 to 1 scale, called the 
relative importance factor, with higher values indicating 
higher sensitivity. By performing sensitivity analysis, we 
can find the input parameters that are most important in 
determining an output parameter, i.e., user satisfaction. 
During this process, we consistently find that the user 

number input has by far the highest relative importance 

factor. Averaging across all of our application tasks, the 
relative importance factor of the user number is 0.56 (more 
than twice as high as the second factor). This strongly 
demonstrates that the user is the most important factor in 
determining the rating. 

Finally, to understand the nature of the relationship 
between the HPCs and the user satisfaction, we analyze the 
trends for different functions for user satisfaction as 
provided by the user at each of the processor frequencies. 



Table 2. User trend categorization, the number of users in each category for each application. 

Applications 

 

 

Constant 

 

 

Linear 

 

 

Step 

 

 

Staircase Other 

Java Game 0 4 8 4 4 

Shockwave 1 5 7 6 1 

Video 18 0 0 0 2 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Framework of the predictive user-aware power management. 

 

Table 2 summarizes the trends observed among different 
users for our three applications. The first row shows the 
trend curves when we plot user satisfaction against the 
different frequencies (along x-axis). Most of the trends can 
be placed in four major categories: 

• Constant – User satisfaction remains unchanged with 
frequency. As a result, it is not affected by frequency 
setting. 

• Linear – User satisfaction increases linearly with 
processor frequency.  

• Step – User satisfaction is the same for a few high 
frequencies but then plummets suddenly for the 
remaining lower ones.  

• Staircase – User satisfaction takes on discrete values 
that monotonically increase with increasing frequency. 

User satisfaction functions that do not match any of the 
above categories are labeled Other. Usually, this is due to 
user feedback which provides a non-monotonic function 

These results reveal several important trends. First, user 
satisfaction is often non-linearly related to processor 
frequency. The majority of users provide functions that are 
categorized as Constant, Step, or Staircase. Note that 
although Constant is a linear function, it does not follow the 
regular assumption that an increase in a given metric results 
in an increase in user satisfaction. Second, user satisfaction 
is application-dependent. For example, for the Video 
application, almost all of the users report a Constant 
function. On the other hand, the trends for the Java game 
are distributed among various categories. Finally, user 

satisfaction is user-dependent. For example, in both the 
Java game, and the Shockwave animation, users specify 
utility functions that span multiple categories. This shows 
that different users have significantly different expectations 
for the system. 

As we will discuss in the next section, these observations 
have an important effect on the modeling technique we use 
for learning and predicting user satisfaction. 

Overall, this motivational study indicates that  

• Hardware counter have a strong correlation with user 
satisfaction; 

• The individual user is the most important factor in 
determining user satisfaction; 

• The relation between hardware performance and user 
satisfaction is often non-linear; and 

• User satisfaction is both application dependent and 
user dependent. 

Based on these observations, we design, implement, and 
evaluate a DVFS scheme that is based on individual user 
preferences. 

5. Predictive User-Aware Power Management 

Based on the initial user study results presented in Section 
4, we develop a power management scheme that sets the 
frequency of the processor based on estimates of user 
satisfaction. This section presents this predictive user-aware 
power management scheme, called Individualized Dynamic 

Frequency and Voltage Scaling (iDVFS). To implement 
iDVFS, we have built a system that is capable of predicting 
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a user’s satisfaction based on interaction with the system. 
The framework can be divided into two main stages as 
depicted in Figure 1: 

Learning Stage – The system is initially trained based on 
reported user satisfaction levels and HPC statistics as 
described in Section 4. Machine learning models, 
specifically artificial neural networks, are trained offline to 
learn the function from HPC values to user satisfaction. 

Runtime Power Management – Before execution, the 
learned model is loaded by the system. During run time, the 
HPC values are sampled, entered into the predictive model, 
and then the predicted user satisfaction is used to 
dynamically set the processor frequency.  

5.1 Learning Stage  

In its learning stage, our algorithm builds a predictive 
model based on individual user preferences. The model 
estimates user satisfaction from the HPCs. In this stage, the 
user is asked to give feedback (user satisfaction level) while 
the processor is set to run at different frequency levels. The 
nature of this training stage is similar to the user study 
described in Sections 3 and 4. Note that the user study and 
its survey are repeated for each application. While a user 
study runs, the nine performance counters are collected and 
the 45 statistical metrics computed from them are extracted. 
The combination of these values and the user feedback are 
used to build the model that will later be used online.  

5.1.1 Predictive Model Building 

The learning stage helps us gather data that associates an 
individual user’s satisfaction with different hardware 
performance counter readings and statistics. These 
instances are then used to build a predictive model that 
estimates the satisfaction of a particular user from the 
HPCs. We use neural networks to learn this model. We 
have also experimented with regression models and 
decision trees, but the neural networks provided the highest 
accuracy. 

An artificial neural network (NN) is an interconnected 
group of artificial neurons that uses a mathematical or 
computational model for information processing based on a 
connectionist approach to computation. A NN maps a set of 
p input variables x1,…,xp to a set of q response variables 
y1,…,yq. It works by simulating a large number of 
interconnected simple analog processing units that resemble 
abstract versions of a neuron. Each processing unit (or 
neuron) computes a weighted sum of its input variables. 
The weighted sum is then passed through the sigmoid 
function to produce the units output. We use a three-layer 
NN model with one input layer, one hidden layer, and one 
output layer. The well-known Backpropagation algorithm is 
used to train the neural network from instance data. In the 
Backpropagation algorithm, the weights between the 
neurons begin as random values. During the learning phase, 
training inputs are provided to the NN and the associated 
output errors are used to adjust neuron weight functions to 
reduce error. 

Our experiments represent a very interesting case for 
machine learning. Typically, machine learning algorithms 
are extensively trained using very large data sets (e.g., 
thousands of labeled training inputs). We would like to use 
NNs for their ability to learn complex non-linear functions, 
but do not have a very large data set. For each application-
user pair, we only have six training inputs; one for each 
processor frequency. A training input consists of a set of 
HPC statistics and a user-provided satisfaction label. When 
we first began building NN models with all 45 inputs (9 
HPC counters with 5 statistics each), we noticed that our 
models were overly conservative, only predicting 
satisfaction ratings within a narrow band of values. We 
used two training enhancements to permit the construction 
of accurate NN models. First, we simplified the NN by 
limiting the number of inputs. Large NNs require large 
amounts of training data to sufficiently learn the weights 
between neurons. To simplify the NN, we used the two 
counters that had the highest correlation, specifically 
PAPI_BTAC_M-avg and PAPI_TOT_CYC-avg (as shown 
in Appendix A). Second, we repeatedly created and trained 
multiple NNs, each beginning with different random 
weights. After 30 seconds of repeated trainings, we used the 
most accurate NN model. These two design decisions were 
important in allowing us to build accurate NN models. 

5.2 Counter-Based Frequency Control Algorithm 

iDVFS uses NN models to determine the frequency level. 
The decision is governed by the following variables: f, the 
current CPU frequency; µUS, the user satisfaction prediction 
for the last 500 ms of execution as predicted by the NN 
model; ρ, the satisfaction tradeoff threshold; αf, a per-
frequency threshold for limiting the decrease of frequency 
from the current f; M, the maximum user comfort level; and 
Ti, the time period for re-initialization. 

iDVFS employs a greedy approach to determine the 
operating frequency. At each interval, if µUS is within αf ρ of 
M, iDVFS predicts that the frequency is in a satisfactory 
state. If µUS-1, the previously predicted user comfort, is also 
within αf ρ of M, the system determines that it may be good 
to decrease the processor frequency; if not, then the system 
maintains the current frequency. If µUS is not within αf ρ of 
M, then the system determines that the current performance 
is not satisfactory and increases the operating frequency. 
iDVFS uses the αf thresholds as a hysteresis mechanism to 
eliminate the ping-pong effect between two states. If the 
processor rapidly switches between two states N times in a 
short time interval, the appropriate αf threshold is decreased 
to make it harder to decrease to the lower frequency level. 
This feature of the algorithm ensures that iDVFS can adjust 
to a set of operating conditions very different from those 
present at initialization but at a rate that is maximally 
bounded by Ti. The constant parameters (ρ = .15, N = 3, Ti 
= 20 seconds) were set based on the experience of the 
authors using the system. αf thresholds are initialized to one 
for each of the frequency level and is decremented by 0.1 at 
each frequency boost. 
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(a)                                                                                                         (b) 

Figure 2. Frequency traces using iDVFS and Windows XP DVFS schemes for (a) Java Game and (b) Video. 

Ideally, we would like to empirically evaluate the 
sensitivity of iDVFS performance to the selected 
parameters. However, it is important to note that any such 
study would require having real users in the loop, and thus 
would be slow. Testing four values of four parameters on 
20 users would require 256 days (based on 20 users/day and 
25 minutes/user). For this reason, we decided to choose the 
parameters based on qualitative evaluation by the authors 
and then “close the loop” by evaluating the whole system 
with the choices. 

Figure 2 illustrates the performance of the iDVFS 
algorithm for two of the three applications in our study. 
Each graph shows, as a function of time, the CPU frequency 
for a randomly-selected user when playing the Java Game 
and watching the Video. First, note that the frequency 
transitions in the two example traces differ greatly from the 
decisions that Windows XP DVFS makes. The reason is 
that Windows XP DVFS alters frequency based upon CPU 
utilization while iDVFS alters frequency based upon 
predicted user satisfaction. iDVFS reduces the frequency 
significantly in the Video application. In this case, the user 
has indicated high satisfaction with all levels of 
performance. As shown in Table 2, the Video has the least 
variation in user satisfaction values at lower frequencies. As 
a result the iDVFS algorithm can reduce CPU frequency 
without affecting user satisfaction. In both cases, the 
frequency level follows the satisfaction levels reported by 
the user and minimizes power consumption with little 
impact on satisfaction. These traces show that iDVFS can 
successfully adjust the clock frequency throttle according to 
the user satisfaction derived from the HPCs. For a highly 
compute-intensive application (such as the Java Game), the 
reduction in the frequency is minimal because any change 
in frequency causes a significant reduction in user-
perceived performance. For other applications (such as the 
Video), frequency can be drastically reduced without 
affecting user satisfaction.  

5.3 Implementation, Integration, and Limitations  

Currently, we have not integrated iDVFS with the 
operating system (OS). Instead, we have implemented client 
software that runs as a Windows toolbar task, and manually 
activate iDVFS for our user studies. The client is 
implemented in a manner that is similar to profile-directed 
optimization. An initial calibration stage is used for 

building a model that is used to predict user satisfaction 
during run time. The current implementation requires direct 
user feedback in a calibration stage for each user and each 
application. While this may be cumbersome, there are two 
points we would like to make. First, we believe that the 
current system is practical for some users (e.g., heavy 
gamers will not mind a few minutes of calibration). Second, 
we argue that explicit user feedback is a viable option. 
Future work in limiting the feedback and learning 
effectively from explicit/implicit mechanisms will allow 
such schemes to be deployed widely. 

iDVFS has a few limitations that will be eliminated once 
it is integrated into the OS. First, we provide the client 
software with per-user, per-application neural network 
models tailored to the application we are about to invoke. 
Second, iDVFS is currently only intended for interactive 
applications. The OS has knowledge of users, as well as 
active applications, and could automatically load the 
appropriate prediction models for interactive applications 
during context switches. 

WinPAPI only supports system-wide HPC sampling; this 
includes other programs, background processes, and kernel 
execution. For our work, we run a single workload on the 
machine at a time; hence HPC samples correlate to the 
workload directly. Ideally, the HPC interface would include 
thread-specific information as well as distinguish between 
user level and kernel level applications. Other HPC 
interfaces (i.e., perfmon2 for Linux [4]) also include this 
support. 

The performance of iDVFS is largely dependent upon 
good user input. While this may be a limitation for a current 
user and application, the user is free to provide new ratings 
and recalibrate iDVFS if the resulting control mechanism 
causes dissatisfaction. 

6. Experimental Results 

In this section, we evaluate the predictive user-aware 
power management scheme with a user study, as described 
in Section 3. We compare iDVFS with the native Windows 
XP DVFS scheme and report reductions in CPU dynamic 
power, as well as changes in measured user satisfaction. 
This is followed by a trade-off analysis between user 
satisfaction and system power reduction. We report the 
effect of iDVFS on the power consumption and user 
satisfaction. 



We compare iDVFS to Windows Adaptive DVFS, which 
determines the frequency largely based on CPU usage level. 
A burst of computation due to, for example, a mouse or 
keyboard event brings utilization quickly up to 100% and 
drives frequency, voltage, power consumption, and 
temperature up along with it. CPU-intensive applications 
cause an almost instant increase in operating frequency and 
voltage regardless of whether this change will impact user 
satisfaction. Windows XP DVFS uses six of the frequency 
states in the Enhanced Intel Speedstep technology, as 
mentioned in Section 3. Performance requirements are 
determined using heuristics based on metrics “such as 
processor utilization, current battery level, use of processor 
idle states, and inrush current events” [11]. In the Windows 
native adaptive DVFS scheme, decisions are made 
according to the algorithm described in Figure 3. We note 
that this is our best interpretation of the DVFS algorithm 
described in [11]. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Windows XP DVFS Algorithm 

6.1 Analysis of User Satisfaction and Power 
Measurements  

To analyze the effect of iDVFS on system power 
consumption, we perform a second set of user studies in 
which the users are asked to carry out the tasks described in 
Section 3. This time, the durations of the applications are 
increased: the Java Game is executed for 2.5 minutes; 
Shockwave and Video are executed for 1.5 minutes each. 
The user is asked to execute the application twice, once for 
Windows XP DVFS and once for iDVFS, which loads the 
individual neural network model for the user/application 
before the start of the execution. Once the execution 
completes, the users are asked to rate their satisfaction with 
each of the systems on a scale of 1 (very dissatisfied) to 5 
(very satisfied). 

During these experiments, we log the frequency over 
time. We use these frequency logs to derive CPU power 
savings for iDVFS compared to the default Windows XP 
DVFS strategy. We have also measured the online power 
consumption of the entire system, and provide a detailed 
discussion and analysis of trade-offs between power 
consumption and user satisfaction. 

6.1.1 Dynamic Power Consumption and User 
Satisfaction  

The dynamic power consumption of a processor is 
directly related to frequency and supply voltage and can be 
expressed using the formula P = V

2
CF, which states that 

power is equal to the product of voltage squared, 
capacitance, and frequency. By using the frequency traces 
and the nominal voltage levels on our target processor [16], 
we calculated the relative dynamic power consumption of 
the processor. Figure 4 presents the CPU dynamic power 
reduction achieved by the iDVFS algorithm compared to 
the Windows XP DVFS algorithm for the individual users 
for each application. It also presents their reported 
satisfaction levels. To understand the figure, consider a 
group of three bars for a particular user. The first two bars 
represent the satisfaction levels for the users for the iDVFS 
(gray) and Windows (white) schemes, respectively. The 
third bar (black) shows the power saved by iDVFS for that 
application compared to the Windows XP DVFS scheme 
(for which the scale is on the right of the figure).  

On average, our scheme reduces the power consumption 
by 8.0% (Java Game), 27.9% (Shockwave), and 45.4% 
(Video) compared to the Windows XP DVFS scheme. A 
one-sample t-test of the iDVFS power savings shows that 
for Shockwave and Video, iDVFS decreases dynamic 
power with over 95% confidence. For the Java game, there 
are no statistically-significant power savings. 
Correspondingly, the average user satisfaction level is 
reduced by 8.5% (Java Game), 17.0% (Shockwave), and 
remains the same for Video. A two-sample paired t-test 
comparing the user satisfaction ratings from iDVFS and 
Windows XP DVFS indicates that for Java and Video, there 
is no statistical difference in user satisfaction when using 
iDVFS. For Shockwave, we reduce user satisfaction with 
over 95% confidence 

The combined results show that for Java, iDVFS is no 
different than Windows XP DVFS, for Shockwave, iDVFS 
trades off a decrease in user satisfaction for a decrease in 
power consumption, and for the Video, iDVFS significantly 
decreases power consumption while maintaining user 
satisfaction. 

An analysis of the results quickly reveals that the average 
satisfaction levels are strongly influenced by a few 
exceptional cases. We have analyzed the cases where there 
is a difference of more than 1 step between the user ratings. 
Among these, we found six cases that require special 
attention. For the Java Game, the training inputs of Users 3, 
6, and 13 (solid rectangles in Figure 4) significantly 
mismatched the performance levels of the processor. 
Specifically, these users have given their highest ratings to 
one of the lowest frequency levels. As a result, iDVFS 
performs as the user asks and reduces the frequency, 
causing dissatisfaction to the user. The cause of 
dissatisfaction for User 4 (dotted rectangle in Figure 4) was 
different. Our neural network for that user did not match the 
training ratings and thus the user was dissatisfied. Similarly, 
for the Shockwave application, Users 6 and 10 (dashed 

IF 150 ms have passed since the last frequency   

   state adjustment  

  AND Performance has increased by 20% since  

      the last evaluation  

    Increase f by one level within the next  
    10 ms  

IF 500 ms have passed since the last frequency  

   state adjustment  

  AND Performance has decreased by 30% since  

      the last evaluation 

  AND A decrease of frequency state by one  

      operating point will remain  

      above 50% of the maximum frequency state  

    Decrease f by one level within the next 
    10 ms 



 

(a) Java Game. 

 

(b) Shockwave animation. 

 

(c) Video. 

Figure 4. User satisfaction and dynamic power reduction for iDVFS compared to the Windows XP DVFS scheme. 

In the graphs, the individual users are plotted on the horizontal axis. The left vertical axis reflects the reported 

satisfaction for iDVFS and Windows XP DVFS, and the right vertical axis report the percentage reduction in 

dynamic power of iDVFS compared to Windows XP DVFS. 
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Figure 5. Improvement in energy consumption, user satisfaction, and energy-satisfaction product for the 

Shockwave application.  



 

Figure 6. System Power Measurement Setup. 

rectangle in Figure 4) provided a roughly constant user 
satisfaction across the various frequencies. During the user 
study, however, these Shockwave users highlighted their 
dissatisfaction when they were able to compare the 
performance of iDVFS to the Windows scheme, which 
keeps the processor at the highest frequency at all times 

It is important to note that such exceptional cases are rare; 
only 10% of the cases (6 out of 60) fall into this category. 
Such exceptional cases can be easily captured during a 
learning phase and eliminated by forcing the user to retake 
the survey and re-train the model, i.e., training can be 
repeated until successful. In addition, any dissatisfied user 
can retrain until a satisfactory performance level is reached. 
However, our results reveal that such cases will be rare.

1
 

User 16’s results are likely to be caused by noise and 
provide a good example of the intricacies of dealing with 
real users. This user rated iDVFS two steps lower than the 
Windows scheme for Shockwave. At the same time, he/she 
rated iDVFS two grades higher for the Java Game 
application even though iDVFS used a lower frequency 
throughout execution. 

Overall, these initial results provide strong evidence that a 
highly-effective individualized power management system 
can be developed. Specifically, the results from our user 
study reveal that  

• There exist applications (e.g., Video), for which 
providing customized performance can result in 
significant power savings without impacting user 
satisfaction;  

• There exist applications (e.g., Shockwave), for which 
the users can trade off satisfaction level with power 
savings. In fact, in the next section, we provide an 
analysis of such trade-offs; and  

• There exist applications (e.g., Java Game), for which 
traditional metrics in determining the satisfaction is 
good and iDVFS will provide the same performance 
level and user satisfaction. 

                                                           

 
1 We also analyzed the performance of iDVFS without considering these 

extreme cases. Overall, iDVFS reduces power consumption by 5.2% (Java 
Game), 24.0% (Shockwave), and 45.4% (Video).  User satisfaction levels 
were increased by 4.8% (Java Game), reduced by 13.9% (Shockwave), 
and remained identical for Video (where there are no exceptional cases).  

6.1.2 Total System Power and Energy-Satisfaction 
Trade Off  

In the previous section, we have presented experimental 
results indicating the user satisfaction and the power 
consumption for three applications. For two applications 
(Video and the Java Game), we concluded that the iDVFS 
users are at least as satisfied as Windows XP DVFS users. 
However, for the Shockwave application, we observed that 
although the power consumption is reduced, this is achieved 
at the cost of a statistically significant reduction in average 
user satisfaction. Therefore, a designer needs to be able to 
evaluate the success of the overall system. To analyze this 
trade-off, we developed a new metric called the energy-

satisfaction product (ESP) that works in a similar fashion to 
popular metrics such as energy-delay product. Specifically, 
for any system, the ESP per user/application can be found 
by multiplying the energy consumption with the reported 
satisfaction level of the user.  

Clearly, to make a fair comparison using the ESP metric, 
we have to collect the total system energy consumption 
during the run of the application. To extract these values, 
we replay the traces from the user studies of the previous 
section. The laptop is connected to a National Instruments 
6034E data acquisition board attached to the PCI bus of a 
host workstation running Windows (and the target 
applications), which permits us to measure the power 
consumption of the entire laptop (including other power 
consuming components such as memory, screen, hard disk, 
etc.). The sampling rate is set to 10 Hz. Figure 6 illustrates 
the experimental setup used to measure the system power.  

Once the system energy measurements are collected (for 
both Windows XP DVFS and iDVFS), we find the ESP for 
each user by multiplying their reported satisfaction levels 
and the total system energy consumption. The results of this 
analysis are presented in Figure 5. In this figure, we present 
the reduction in system energy consumption, increase in 
user satisfaction, and change in ESP for each user. Hence, 
the higher numbers correspond to improvement in each 
metric, whereas negative numbers mean that the Windows 
XP DVFS scheme performed better. Although the ESP 
improvement varies from user to user, we see that iDVFS 
improves the ESP product by 2.7%, averaged over all users. 
As a result, we can conclude that Windows XP DVFS and 
iDVFS provide comparable ESP levels for this particular 
application. In other words, the reduction in user 
satisfaction is offset at a significant benefit in terms of 
power savings. 

7. Related Work 

Dynamic voltage and frequency scaling (DVFS) is an 
effective technique for microprocessor energy and power 
control for most modern processors [8, 16]. Energy 
efficiency has traditionally been a major concern for mobile 
computers. Fei, Zhong and Ya [14] propose an energy-
aware dynamic software management framework that 
improves battery utilization for mobile computers. 
However, this technique is only applicable to highly-



adaptive mobile applications. Researchers have proposed 
algorithms based on workload decomposition [10], but 
these tend to provide power improvements only for 
memory-bound applications. Wu et al. [26] present a design 
framework for a run-time DVFS optimizer in a general 
dynamic compilation system. The Razor [13] architecture 
dynamically finds the minimal reliable voltage level. Dhar, 
Maksimovic, and Kranzen  [12] propose an adaptive 
voltage scaling technique that uses a closed-loop controller 
targeted towards standard-cell ASICs. Intel Foxton 
technology [19] provides a mechanism for select Intel 
Itanium 2 processors to adjust core frequency during 
operation to boost application performance. To the best of 
our knowledge, none of the previous DVFS techniques 
consider the user satisfaction prediction.  

Other DVFS algorithms use task information, such as 
measured response times in interactive applications [21, 23, 
28] as a proxy for the user. Vertigo [15] monitors 
application messages and can be used to perform the 
optimizations implemented in our study (although to the 
best of our knowledge this has not been studied). However, 
compared to Vertigo, our approach provides a 
metric/framework that is much easier to use. Xu, Ross, and 
Melhem propose novel schemes [27] minimizing energy 
consumption in real-time embedded systems that execute 
variable workloads. However, they try to adapt to the 
variability of the workload rather than to the users. Gupta, 
Lin, and Dinda  [17], and Lin and Dinda  [20] demonstrate 
a high variation in user tolerance for performance in the 
scheduling context, variation that we believe holds for 
power management as well. 

Mallik et al. [23, 24] show that it is possible to utilize user 
feedback to control a power management scheme, i.e., 
allow the user to control the performance of the processor 
directly. However, their system requires constant feedback 
from the user. Our scheme correlates user satisfaction with 
low level microarchitectural metrics. In addition, we use a 
learning mechanism to eliminate user feedback to make 
long-term feedback unnecessary. Anand, Nightingale, and 
Flinn  [5] discuss the concept of a control parameter that 
could be used by the user. However, they focus on the 
wireless networking domain, not the CPU. Second, they do 
not propose or evaluate a user interface. 

Sasaki et al. [25] propose a novel DVFS method based on 
statistical analysis of performance counters. However, their 
technique needs compiler support to insert code for 
performance prediction. Furthermore, their technique does 
not consider user satisfaction while setting the frequency. 
The primary contribution of our work is to establish the 
correlation between hardware counters and user satisfaction 
and utilize this correlation to develop a user-aware DVFS 
technique. 

8. Conclusion 

Through extensive user studies, we have demonstrated 
that there is a strong, albeit usually nonlinear, link between 
low-level microarchitectural performance metrics, as 

measured by hardware performance counters (i.e., “close to 
the metal” numbers), and user satisfaction (i.e., “close to 
the flesh” numbers) for interactive applications. More 
importantly, we show that the link is highly user-dependent. 
This variation in user satisfaction indicates potential for 
optimization. Using neural networks, we learn per-user per-
application functions (which might be called “metal to flesh 
functions”) that map from the hardware performance 
counters to individual user satisfaction levels. This result in 
a computer system that can uses small amounts of explicit 
user feedback, and then implicitly learns from the feedback 
to make online predictions of user satisfaction. We 
demonstrate the utility of this implicit feedback by 
employing it in a user-aware DVFS algorithm. 
Experimental results, and analysis of user studies, show that 
there are interactive applications for which knowledge of 
user satisfaction permits power consumption savings. 
Others present an interesting trade-off between user 
satisfaction and power savings. Overall, our system reduces 
the power consumption of Windows XP DVFS by over 
25%, while only affecting user satisfaction in one 
application. 
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Appendix A 

Table 3 presents the correlation between 45 metrics based 
on hardware counter readings. Please see Section 4 on 
details of the calculation of these correlation factors. 

 

 
 
 
 

Table 3. Correlation between the hardware performance counters and user satisfaction 

Performance Metrics Correlation  Performance Metrics Correlation  Performance Metrics Correlation  

PAPI_BTAC_M-avg 0.771 PAPI_RES_STL-max 0.738 PAPI_TOT_INS-range 0.625 

PAPI_L1_ICA-avg 0.770 PAPI_BTAC_M-max 0.733 PAPI_TOT_INS-min 0.603 

PAPI_L1_ICA-stdev 0.770 PAPI_TOT_INS-max 0.729 PAPI_L1_DCA-min 0.528 

PAPI_BTAC_M-stdev 0.770 PAPI_L2_TCM-avg 0.722 PAPI_L2_TCM-max 0.525 

PAPI_L1_DCA-stdev 0.768 PAPI_L1_DCA-range 0.721 PAPI_BR_MSP-min 0.503 

PAPI_TOT_INS-avg 0.768 PAPI_L2_TCM-stdev 0.709 PAPI_L2_TCM-range 0.497 

PAPI_TOT_CYC-avg 0.767 PAPI_RES_STL-min 0.694 PAPI_L2_TCM-min 0.495 

PAPI_L1_DCA-max 0.767 PAPI_TOT_CYC-min 0.689 PAPI_BR_MSP-max 0.379 

PAPI_TOT_CYC-stdev 0.767 PAPI_RES_STL-range 0.684 PAPI_BR_MSP-range 0.360 

PAPI_TOT_INS-stdev 0.766 PAPI_L1_ICA-min 0.682 PAPI_BTAC_M-min 0.289 

PAPI_L1_DCA-avg 0.766 PAPI_L1_ICA-range 0.675 PAPI_HW_INT-max 0.131 

PAPI_RES_STL-avg 0.761 PAPI_BR_MSP-avg 0.662 PAPI_HW_INT-range 0.119 

PAPI_RES_STL-stdev 0.761 PAPI_BTAC_M-range 0.653 PAPI_HW_INT-min 0.112 

PAPI_TOT_CYC-max 0.756 PAPI_TOT_CYC-range 0.644 PAPI_HW_INT-stdev 0.094 

PAPI_L1_ICA-max 0.749 PAPI_BR_MSP-stdev 0.638 PAPI_HW_INT-avg 0.048 

 


