
Memory Access Aware On-Line Voltage Control for
Performance and Energy Optimization

Xi Chen∗, Chi Xu†, and Robert P. Dick∗

∗EECS Department
University of Michigan
Ann Arbor, MI 48109

{chexi@, dickrp@eecs.}umich.edu

†ECE Department
Univeristy of Minnesota
Minneapolis, MN 55455

xuchi@umn.edu

Abstract—This paper describes an off-chip memory access-aware run-
time DVFS control technique that minimizes energy consumption subject
to constraints on application execution times. We consider application
phases and the implications of changing cache miss rates on the ideal
power control state. We first propose a two-stage DVFS algorithm based
on formulating the throughput-constrained energy minimization problem
as a multiple-choice knapsack problem (MCKP). This algorithm uses
a power model that adapts to application phase changes by observing
processor hardware performance counter values. The solutions it pro-
duces provide upper bounds on the energy savings achievable under a
performance constraint. However, this algorithm assumes a priori (oracle
or profiling-based) knowledge of application phase change behavior. To
relax this assumption, we propose P-DVFS, an predictive DVFS algorithm
for on-line minimization of energy consumption under a performance
constraint without requiring a priori knowledge of an application’s be-
havior. P-DVFS uses hardware performance counter based performance
and power models. It predicts remaining execution time online in order to
control voltage and frequency settings to optimize energy consumption
and performance. The P-DVFS problem is formulated as a multiple-
choice knapsack problem, which can be efficiently and optimally solved
online. We evaluated P-DVFS using direct measurement of a real DVFS-
equipped system. When bounding performance loss to at most 20% of
that at the maximum frequency and voltage, P-DVFS leads to energy
consumptions within 1.83% of the optimal solution for our problem
instances on average with a maximum deviation of 4.83%. In addition to
producing results approaching those of an oracle formulation, P-DVFS
reduces power consumption for our problem instances by 9.93% on
average, and up to 25.64%, compared with the most advanced related
work.

I. INTRODUCTION AND RELATED WORK

Energy consumption is important in both portable computer sys-
tems, due to its impact on battery lifespan, and high-performance
stationary computers, due to its impact on energy and cooling costs.
Prior work has considered minimizing processor energy consumption.
Chang et al. proposed a dynamic programming energy minimization
technique for multiple supply voltage scheduling in both pipelined
and non-pipelined datapaths [1]. Zhang et al. developed a two-
phase technique that integrates task assignment, task scheduling,
and voltage selection for energy minimization [2]. Varatkar et al.
proposed a communication-aware task scheduling and voltage selec-
tion algorithm to minimize the overall system energy consumption
in a multiprocessor environment [3]. However, the goal of these
techniques is to minimize energy without affecting performance;
trade-offs between performance and energy consumption were not
considered.

Other researchers have considered power management mechanisms
that trade off performance and power consumption. One of the most
promising of these is dynamic voltage and frequency scaling (DVFS).
Two characteristics are important to DVFS control policies. First,
a well-designed DVFS control policy must model and react to the
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dynamically changing trade-offs between application performance
and power consumption. A reduction in processor voltage and
frequency has very different energy and performance impacts on
applications that are heavily accessing off-chip memory, and those
that are consistently hitting in cache and therefore have performance
constrained only by the current frequency of the processor. A well-
designed DVFS policy must continuously monitor and adapt to the
behavior of applications. Second, if a DVFS control policy is to
guarantee that a particular application consistently runs with adequate
performance, e.g., honoring an instruction throughput constraint,
it should maximize energy consumption savings by predicting the
distribution of future instructions among different memory access
behaviors categories. This allows the control policy to increase
processor voltage and frequency when the performance benefit per
lost energy unit is the highest and reduce frequency and voltage when
the energy benefit per lost performance unit is the highest.

A number of researchers have worked on DVFS-related control
to optimize power and energy consumption. Isci et al. proposed
a runtime phase monitoring and prediction technique to reduce
power consumption using DVFS [4]. However, this technique does
not bound performance degradation. Wu et al. proposed dynamic
compiler driven DVFS for controlling microprocessor energy and
performance [5]. However, their work requires changes to the un-
derlying compilation infrastructure. In addition, their technique does
not attempt to honor performance constraints. Liu et al. proposed a
technique to optimize peak temperature subject to a real-time perfor-
mance constraint using DVFS [6]. However, their assumption that the
execution time of a task is inversely proportional to CPU frequency is
correct only for systems in which all layers of the memory hierarchy
operate at the same frequency, as we will demonstrate in Section II-A.
The technique proposed by Choi et al. is the closest to ours [7]. The
goal of their technique is to minimize energy consumption under a
constraint on the total program execution time. Detailed comparisons
with their work can be found in Section IV-B. Their DVFS policy
considers the impact of application phases and off-chip memory
accesses. However, it considers only immediate application behavior
instead of adaptively controlling power state using predictions based
on long-term behavior history.

Our work differs from prior work in the following main ways.
1) We propose a two-stage DVFS algorithm that allows us to

formulate the throughput-constrained energy minimization problem
as an MCKP problem, solve it optimally, and use the solution to
guide online frequency and voltage control. This algorithm builds
on an application phase-dependent power model, taking advantage
of processor hardware performance counters. The solutions obtained
using the two-stage algorithm determine the optimal energy savings
under a performance degradation ratio, for our formulation and
problem instances. However, it assumes access to oracle or profiling-



based information about application behavior. In the rest of the
paper, we will use “optimal solution” in the context of our problem
formulation when this does not introduce ambiguity.

2) We also propose P-DVFS, a predictive online DVFS algorithm
that requires no a priori knowledge of application behavior. P-DVFS
uses hardware performance counter based power and performance
models to adapt to the behavior of running applications. It predicts
remaining execution time online in order to control voltage and
frequency to minimize energy consumption under application-level
performance constraints. Like the two-stage oracle DVFS algorithm,
P-DVFS is also formulated as a multiple-choice knapsack problem.
This formulation permits rapid, optimal, on-line solution of real
problem instances.

3) In contrast with all related work, except that of Choi et al. [7],
we consider the dependence of the power consumption performance
tradeoffs available via DVFS upon application memory access be-
havior, i.e., phase. By adapting to application phase, our technique
supports more aggressive power management settings when they have
the least negative performance impact. To this end, we describe a
method of modeling the performance and power consumption of the
processor using built-in hardware performance counters.

4) In contrast with all past work, our problem formulation supports
application-level throughput requirement, not instantaneous instruc-
tion throughput requirement. This is supported by on-line monitoring
of application behavior as well as prediction of application run times.
We evaluated P-DVFS via direct measurement during operation on a
real system. When limiting performance loss to at most 20% of that
possible at the maximum frequency and voltage, P-DVFS leads to
energy savings within 1.83% of optimal on average with a maximum
deviation of 4.83%, for our problem instances. It improves energy
consumption by 9.80% on average, and up to 29.86%, compared to
the most advanced related DVFS control technique. P-DVFS also
reduces power consumption by up to 25.64% (9.93% on average)
compared with the most advanced related work.

II. MOTIVATION AND PROBLEM FORMULATION

In this section, we first describe how the trade-offs between per-
formance and energy consumption change depending on application
off-chip memory access behavior. We then present the problem
formulation for energy minimization given a user-specified constraint
on application execution time. Finally, we present a dynamic power
state control policy that adjusts CPU frequency based on off-chip
memory access patterns.

II.A. Performance and Energy Trade-Offs
The execution time of a task can be decomposed into on-chip and

off-chip latencies. The latencies of on-chip components scale linearly
with CPU frequency, because they share the same clock with the
processor. In contrast, off-chip latencies, caused by accesses to off-
chip resources such as main memory and disk, are independent of
CPU frequency, because the off-chip resources have one or more
separate clock.

The power consumption of a task can be divided into dynamic
power and static power. Dynamic power consumption is caused by
switching transistors charging and discharging capacitive loads. It
generally scales superlinearly with CPU clock frequency [8]. Static
power consumption is primarily due to gate and subthreshold leakage
currents of transistors. It does not directly depend on CPU frequency
but depends on the voltage. In general, reducing frequency and
voltage reduces both dynamic and static power consumption.

Many modern processors support dynamic voltage and frequency
scaling (DVFS) capability. The typical voltage change overhead for
our evaluation platform is 50 µs. Given an application with some

phases in which instruction throughput is limited largely by processor
core performance and other phases in which instruction through-
put is limited largely by (processor frequency independent) off-
chip memory access latency, we can maximize energy consumption
improvement and minimize performance overhead by using a low
CPU frequency during memory-bound application phases and a high
CPU frequency during core-bound application phases. What temporal
granularity should this control use? The DVFS switching overhead
of 50 µs (see Section IV) implies that adjustments should happen no
more frequently than once every hundred microseconds, thus limiting
overhead.

II.B. Problem Formulation
The performance-constrained energy minimization problem can be

formulated as follows: Given that α is the user-specified performance
degradation ratio relative to the maximum performance of a given task
and Tfmax is the execution time of the task running at the highest
frequency, find the optimal CPU frequency as a function of time t,
such that the total energy consumption of the task is minimized and
the actual execution time of the task subject to DVFS, is no larger
than (1+α)Tfmax . Note that this performance constraint is soft, i.e.,
it is highly desirable to meet it. However, violating the constraint
does not mean failure: a cost function may be associated with the
degree of constraint violation.

As indicated in Section II-A, the energy saving potential directly
relates to the proportion of total execution time resulting from waiting
for off-chip data access, which are primarily L2 cache misses in our
experiments. We assume that each L2 cache miss takes the same
amount of time. Hence, the number of L2 cache misses per instruc-
tion (MPI), is a good indicator of the potential for saving energy.
Intuitively, it is beneficial to assign higher frequencies for intervals
with low MPIs (to improve performance) and lower frequencies for
intervals with high MPIs (to save energy).

In real operating systems, power control policies are usually
implemented using adjustments at discrete time intervals. Discretized
MPI values are used. We define a control point as a time at which
control decisions are made and a scaling point as a time at which
the CPU frequency is modified. The control period is the duration
between two consecutive control points and the scaling period is
the duration between two consecutive scaling points. Note that these
periods need not be the same. In fact, it is reasonable to use a much
larger control period than scaling period to minimize performance
overhead incurred by the controller and use time multiplexing to
emulate continuous DVFS within a control period.

Given an MPI distribution within a control period, S is the set of
all MPI slots and F is the set of all available frequency levels. Our
goal is to find the correct frequency level fi for each slot i ∈ S
such that the total energy consumption Etotal is minimized and the
actual execution time Tact satisfies Tact ≤ (1 +α)Tfmax . Therefore,
assuming the distribution is independent of frequency, for each i ∈
S with frequency fi, given that SPIi(fi) is the number of seconds
per instruction at frequency fi, Pi(fi) is the power consumption,
and poi i is the percentage of instruction associated with slot i, the
objective function and the constraint can be expressed in terms of total
number of instructions Itotal and total energy consumption Etotal , i.e.,

Etotal = Itotal ·
X
i∈S

Pi(fi) · poi i · SPIi(fi) and (1)

Tact ≤ (1 + α)Tfmax . (2)

The goal is to minimize Etotal subject to Equation 2. Since the DVFS
switching overhead ranges from 50 µs to 200 µs, the performance (or
energy) overhead due to a frequency change is less than 0.7%, given
a scaling period of 30 ms. Therefore, we ignore its impact in our



problem formulation. Note that Pi(fi) in Equation 1 depends on
both the CPU frequency and application behavior, e.g., the number
of last-level cache misses per second (see Section III-B).

III. SYSTEM MODELING

In this section, we first explain our task performance and power
models. We then formulate the energy minimization problem as a
multiple-choice knapsack problem (MCKP) and solve it optimally,
assuming knowledge of the average SPI at the maximum frequency
(SPIfmax ) and the exact application MPI distribution. We then relax
our assumptions and propose an execution time predictor that is ac-
curate at the highest frequency. This allows us to formulate the online
DVFS problem again as an MCKP, which can be solved efficiently
on-line. Finally, we explain the software system architecture used
to control DVFS in order to accurately adjust the trade-off between
performance and energy consumption.

III.A. Performance Modeling
Equation 2 depends on a formula that accurately expresses the

relationship between SPI, MPI, and CPU frequency. Intuitively, the
amount of time consumed per instruction can also be decomposed
into on-chip and off-chip latencies. On-chip latency is inversely
proportional to frequency, while off-chip latency, captured by MPI,
is independent of frequency. Prior work has reached the same
conclusion [4]. SPI can be expressed as

SPI(MPI, f) = c1 ·MPI + c2/f, or equivalently, (3)

CPI(MPI) = c1 · f ·MPI + c2, (4)

where CPI is the number of cycles per instruction, f is the CPU
frequency, and c1 and c2 are constants to be determined via fitting.

Most modern processors have built-in hardware performance coun-
ters that record information about architectural events, e.g., number
of instructions retired and cache misses [9]. By gathering these
two event counts, we can compute SPI and MPI during application
execution. Therefore, given the last N data points reported by
hardware performance counters, we can determine c1 and c2 can
be determined using linear regression. The relevant formulæ follow.

c1 =
N · (

PN
i=1 xi · yi)− (

PN
i=1 xi) · (

PN
i=1 yi)

N · (
PN
i=1 x

2
i )− (

PN
i=1 xi)

2
and (5)

c2 =

 
NX
i=1

yi − c1 ·
NX
i=1

xi

!
/N, (6)

where xi denotes the product of MPI and CPU frequency for the ith
data point and yi represents the CPI for the ith data point. Note that
N should be carefully chosen to capture changes in memory access
pattern quickly and support accurate regression-based modeling. In
our experiments, varying N between 10 and 50 has insignificant
impact on energy consumption (a variation of 0.5% in total energy
was observed). However, if N is smaller than 10, e.g., 4, we see an
4% energy consumption increase due to inaccuracies in the linear
regression model. In our experiments, we set N to 20.

III.B. Power Modeling
Equation 1 indicates the necessity of having an accurate formula to

describe the relationship between power consumption and MPI. Since
an L2 cache misses are time consuming, the power consumption
is higher for larger MPI values and smaller for lower MPI values.
However, the power consumption also depends on other architectural
events such as number of floating point instructions executed and
number of L1 data cache accesses. We experimented with different
combinations of hardware performance counter events and observed
that following five were sufficient to permit accurate estimation of
power consumption:

1) number of L1 data cache references per second (L1DPS),
2) number of L2 cache references per second (L2PS),
3) number of L2 cache misses per second (L2MPS),
4) number of floating point instructions executed per second

(FPPS), and
5) number of branch instructions retired per second (BRPS).

As a first-order approximation, we assume each access to system
components such as L1 caches and L2 cache consumes a fixed
amount of energy. Therefore, the total power consumption depends
linearly on these five events. In addition, the dynamic power con-
sumption depends nonlinearly on CPU frequency [10]. Given that f
is the CPU frequency, the power consumption can be estimated as
follows:

P = b0 + b1 · L1DPS + b2 · L2PS + b3 · L2MPS +

b4 · FPPS + b5 · BRPS + b6 · f1.5, (7)

where bi, i = 0, · · · , 6 are task-specific constants that can be de-
termined during pre-characterization. The frequency exponent of 1.5
was determined empirically. It is worth mentioning that b0 accounts
for system idle and leakage power. For example, the formula for the
“mcf” benchmark (see Section IV) follows:

P = 4.778 + 2.2864× 10−9 · L1DPS+

6.517× 10−8 · L2PS− 3.596× 10−7 · L2MPS+

0.6342 · FPPS− 3.136× 10−9 · BRPS + 4.308 · f1.5. (8)

For all the benchmarks we evaluated, the application-dependent
power models have an average error of 6.67% and a maximum
error of 12.2% across all four CPU frequencies. Note that if the
processor has built-in power sensors [11], the pre-characterization
phase can be eliminated and the constants can be determined during
execution using a regression-based approach such as that described
in Section III-A.

III.C. Cost Minimization
This section describes formulation of the DVFS power manage-

ment state control problem as a multiple-choice knapsack problem
(MCKP). Given multiple sets, each containing multiple items, each
of which is associated with a profit and a weight, MCKP requires the
selection of one item from each set. The selection is optimal when
the total profit is maximized and the total weight of the selected items
is below a constraint. The DVFS problem instance can be converted
into an MCKP instance by treating each potential frequency level as
an item. The weight of the item is the expected throughput at the
associated frequency level. The profit of the item is the associated
reduction in expected energy consumption compared to the energy
at the highest frequency. Note that, depending on whether we have
a priori knowledge SPIfmax and the MPI distribution throughout
program execution, the DVFS problem instance can be formulated
as different MCKP instances, as explained in Section III-C2 and
Section III-C3.

III.C.1) Cost Function: Equations 3 and 7 can be substituted into
Equation 1. For each slot i ∈ S within a control period where S is
the set of all MPI slots, SPIi and Pi depend only on the frequency
level assigned to MPI slot i. However, both are nonlinear due to the
nonlinearity of SPI and power consumption in CPU frequency. The
resulting nonlinear optimization problem cannot be efficiently solved
online.

We use a binary variable xij to indicate whether the frequency fj
is assigned to MPI slot i.

xij =

(
1, fj is assigned to MPI slot i and
0, otherwise.

(9)



Note that
P
fj∈F xij = 1, ∀ slot i ∈ S. Therefore, for each slot

i ∈ S, SPIi can be expressed as follows.

SPIi =
X
fj∈F

xij · (c1 ·MPIi + c2/fj)

= c1 ·MPIi +
X
fj∈F

c2/fj · xij . (10)

Since constants c1, c2, and F are known at the control point,
Equation 10 can be simplified as follows.

Letting s0 = c1 ·MPIi and

sj = c2/fj ,∀fj ∈ F,

SPIi = s0 +

|F |X
j=1

sjxij . (11)

where |F | is the number of elements in F . Similarly, the value of
the five events in Equation 7 are also known at the control point.
It is worth mentioning that the five event counts are also frequency
dependent. We therefore normalize event count to instruction count
instead of time. For example, for L1 data accesses, we record the
number of L1 data cache accesses per instruction (L1DPI), which is
independent of frequency. Hence, for MPI slot i with frequency fj ,
we have

L1DPSi(fj) = L1DPIi/SPIi(fj) , mij,1. (12)

Similarly, we use mij,2, mij,3, mij,4, and mij,5 to represent
L2PSi(fj), L2MPSi(fj), FPPSi(fj), and BRPSi(fj). Defining w0 =
b0 and wij =

P5
k=1 bi ·mij,k+ b6 ·f1.5

j ,∀fj ∈ F , allows the power
consumption for MPI slot i to be expressed as follows:

Pi = w0 +

|F |X
j=1

wijxij . (13)

Combining Equations 11 and 13, Equation 1 can be rewritten as
follows:

Etotal = Itotal
X
i∈S

poi i · (w0 +

|F |X
j=1

wijxij)(s0 +

|F |X
k=1

skxik). (14)

Note that poi i is known at the control point. In addition,

xij · xik =

(
xij , if and only if j = k and
0, otherwise.

(15)

Therefore, Equation 14 can be simplified as follows.

Letting e0 = Itotal · w0s0 and

eij = poi i(w0sj + wijs0 + wijsj),

Etotal = e0 +
X
i∈S

X
fj∈F

eijxij . (16)

III.C.2) Performance Constraint – the Oracle Solution: We
first assume that we have a priori knowledge of SPIfmax and the
MPI distribution throughout the program execution and demonstrate
we can solve this problem optimally. Our solution has two stages:
profiling and evaluation. During profiling, we record the necessary
information, e.g., SPIfmax as well as the percentage of instructions
and the hardware performance counter values, for each MPI slot.
This allows an optimal solution to the problem. During evaluation,
we use the optimal solution obtained in the profiling stage to adjust
the frequency dynamically to minimize energy consumption while
honoring the performance constraint. The formulation we have just
described computes the optimal solutions an oracle would yield.
It therefore allows us to determine an upper bound on the energy
savings given a particular performance constraint. We will later

propose an on-line DVFS technique requiring no application pre-
characterization. We will evaluate the quality of this prediction-based
technique, called P-DVFS, by comparing its results with those of the
optimal oracle formulation.

Assuming the number of instructions associated with MPI slot i is
denoted as Ii, Equation 2 can be rewritten asX

i∈S

X
fj∈F

Ii · SPIi(fj) · xij ≤ (1 + α)Tfmax . (17)

Dividing both sides by Itotal yieldsX
i∈S

X
fj∈F

poi i · SPIi(fj) · xij ≤ (1 + α)SPIfmax . (18)

Although we can use Equation 3 to express SPI as a function of
MPI and frequency, in reality we record SPIi(fj) during profiling
to eliminate the impact of linear regression error on the quality of
the optimal solution. More specifically, at each scaling point during
profiling, the frequency is reduced to the closest lower level. When
the frequency cannot be reduced further, we increase the frequency
to the highest level. This process is repeated until the program under
profiling finishes. We then compute the average SPIi(fj) associated
with each MPI slot i and each frequency fj . Hence, we can treat
SPIi(fj) as a constant kij . Equation 18 thus becomesX

i∈S

X
fj∈F

poi i · kij · xij ≤ (1 + α)SPIfmax . (19)

Itotal and e0 are constants. Thus, the problem can be formulated as
follows:

Minimize
P
i∈S
P
fj∈F eijxij (20)

Subject to
P
i∈S
P
fj∈F poi i · kij · xij ≤ (1 + α)SPIfmax and

xij ∈ {0, 1},
P
fj∈F xij = 1, ∀i ∈ S (21)

Note that xij are binary integer variables and eij , poi i, and ki,j are
positive constants. Therefore, by scaling the constants with a large
positive number, we can make the coefficients eij , poi i, and ki,j
and the right hand side of the constraint in Equation 21 positive
integers. Thus, the formulation can be treated as an multiple-choice
knapsack problem (MCKP) [12]. We solve this problem optimally
using “lp solve” [13]. We record the frequencies assigned to each
MPI value in an |S| × |F | lookup table. During evaluation, we use
the current MPI value to look up and adjust the frequency at each
scaling point.

III.C.3) Performance Constraint – P-DVFS: For this formula-
tion, we assume that the MPI distribution is unknown. However, our
MPI distribution prediction technique relies on the similarity between
present and future MPI distributions. It is known that most programs
have repeated phases with periods ranging from 200 ms–2 s [14].
Therefore, this assumption holds given a reasonable observation
duration. In our experiments, we use performance counter values
during the most recent control period when deriving the optimal
frequency settings for the next control period. We will also discuss
our using solutions when the total number of instructions are known
or unknown. In the rest of the paper, we will use P-DVFS (predictive
DVFS) to indicate the online predictive DVFS technique.

At each control point, the number of instructions retired is known.
It is therefore natural to use the remaining number of instructions Ir
and remaining energy consumption Er instead of Itotal and Etotal

in our problem formulation. We first note that Equation 16 is still
applicable, except that Etotal and Itotal should be replaced with Er
and Ir . Given that Telap is the elapsed time and Tr is the remaining



execution time, Equation 2 can be written as

Tr = Ir ·
X
i∈S

poi i · SPIi(fi) ≤ (1 + α)Tfmax − Telap . (22)

Equation 3 allows us to rewrite the left side of Equation 22 as

Ir ·
X
i∈S

poi i · SPIi(fi) = Ir ·
X
i∈S

X
fj∈F

dijxij , (23)

where dij = poi i/ (c1 ·MPIi + c2/fj) , ∀fj ∈ F . Therefore, Equa-
tion 22 can be simplified as follows:X

i∈S

X
fj∈F

dijxij ≤
(1 + α)Tfmax − Telap

Ir
. (24)

Execution Time Prediction: Equation 24 requires an accurate
prediction of Tfmax at each control point. By comparing Telap with
(1 + α)Tfmax , we can roughly estimate how aggressively we should
adjust the CPU frequency during the remaining execution time. If
Telap << (1 + α)Tfmax , we can reduce the CPU frequency to a
much lower level than that if Telap >> (1+α)Tfmax . However, it is
challenging to predict Tfmax accurately online because (1) the control
algorithm changes the CPU frequency very rapidly, thus resulting in
rapid and significant performance fluctuations and (2) the prediction
algorithm should impose little overhead.

In order to derive a fast and accurate prediction method, we fist
decompose Tfmax into two parts: the amount of time it takes to
execute the instructions retired when running at the highest frequency
Telap,max and the remaining time to finish execution when running
at the highest frequency Tremain,max . We can derive Telap,max using
Equation 26. fk is the frequency used for scaling period k, Tk,fk

is the amount of time elapsed at frequency fk, fmax is the highest
frequency, and MPIk is the average MPI value, i.e., the amount of
time required to execute the same number of instructions in period
k when the highest frequency is employed.

Tk,max = Tk,fk ·
SPI(MPIk, fmax )

SPI(MPIk, fk)
. (25)

Therefore, Telap,max can be expressed as

Telap,max =
X
k

Tk,max =
X
k

„
Tk,fk ·

SPI(MPIk, fmax )

SPI(MPIk, fk)

«
. (26)

In order to determine Tremain,max , we first assume the instruction
count of the current task is known, e.g., by examining the input
data file size or history information. This assumption holds for most
data processing applications such as image encoding and decoding,
data compression, and placement and routing, whose run times are
generally functions of input file size. Given that Itotal is the total
instruction count, Ielap is the number of instructions retired, Ir is
the remaining number of instructions to be executed, and SPI(f) is
the amount of time per instruction at frequency f , we can express
Tremain,max as follows.

Ir = Itotal − Ielap and (27)

Tremain,max = Ir · SPI(fmax ) (28)

Combining Equations 26 and 28, Tfmax can be expressed as

Tfmax = Telap,max + Tremain,max . (29)

We also consider the scenario in which the total instruction count
is unknown before the task is executed. We use Ir to denote the
remaining number of instructions, in billions. We start with an Ir
of 1. At every scaling point, we subtract, from the current Ir , the
number of instructions retired since the last reset of Ir . If the result
is smaller than 1, we reset Ir to the number of instructions retired
since the task started. If the resulting Ir exceeds an upper bound Iup ,
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Performance 

model
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Figure 1. System architecture for P-DVFS.

we set Ir to Iup . Ir is then substituted into Equation 28 to estimate
the remaining execution time. Note that Iup should be large enough to
permit aggressive frequency control and yet small enough to preserve
accuracy. We use an Iup of 30 (billion) in our experiments. We
experimentally determined that the energy consumption is relatively
insensitive to changes in Iup : a variation of only 0.8% in total energy
consumption is observed when varying Iup from 5 to 500. In our
experiments, given a performance degradation ratio of 0.2, the energy
consumptions only deviate by 2% from those if Itotal is known
beforehand, i.e., from pre-characterization, file size based estimates,
or assuming an oracle with knowledge of future application behavior.

Given that Tfmax and Ir can be estimated online, the energy
minimization problem can then be formulated as an MCKP.

Minimize
P
i∈S
P
fj∈F eijxij (30)

subject to
P
i∈S
P
fj∈F dijxij ≤

(1+α)Tfmax−Telap

Ir
and (31)

xij ∈ {0, 1},
P
fj∈F xij = 1, ∀i ∈ S. (32)

We can treat the right hand side of the constraint in Equation 31
as positive. Otherwise, the constraint is trivially satisfied. Unlike
the oracle scenario, the P-DVFS technique requires solving MCKP
online. Although MCKP is NP-hard, there exist algorithms that can
solve it in pseudo-polynomial time [15], [12]. We used “lp solve” to
obtain optimal solutions online. Our experiments had 15 MPI slots
and 4 frequency levels. For each of the evaluated benchmarks, it took
less than 1 ms to obtain the optimal solution, which is fast enough
for online control. Note that this also indicates the energy overhead
of the MCKP solver is approximately 0.1%, given the control period
of 1 s in our experiments. Pisinger’s MCKP solver implementation
would permit an even more efficient solution in a production version
of the control software [15].
III.D. P-DVFS System Architecture

We have integrated the performance model, power model, exe-
cution time predictor, and MCKP solver to accurately control the
CPU frequency for a fine-grained trade-off between performance
and energy. Figure 1 illustrates the system architecture for the P-
DVFS technique. We use Tcontrol and Tscaling to represent the control
and scaling periods. As indicated in Figure 1, whenever a timer
interrupt occurs, we increment the time counters t1 and t2. We first
determine whether t1 has reached Tcontrol . If so, we analyze MPI-
related statistics, i.e., divide the range of MPI values into distinct MPI
slots and calculating the percentage of instructions (poi i) associated
with each MPI slot i, and determine the values of coefficients such as
{sj} in Equation 11 and {wij} in Equation 13 using the performance
and power models. We also gather information about the available



processors frequencies fj . These values are translated to {eij} and
{dij} in Equations 30 and 31, which are then provided to the MCKP
solver along with estimates of Tfmax and Ir in Equation 27 and
28. The optimal solutions are then stored in a mapping table and
time counters t1 and t2 are reset to 0. When t1 < Tcontrol, we
continue to check whether t2 has reached Tscaling and if so, we set
the CPU frequency to the value corresponding to the current MPI
in the mapping table and reset the time counter t2. Otherwise, the
Tfmax estimate is updated. The task then continues executing until
the next timer interrupt occurs. Note that the DVFS algorithm is
implemented in software and has very low performance and energy
overhead (approximately 0.3%).

IV. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup and
implementation details of the proposed techniques. We then present
the experimental results for both P-DVFS and the optimal two-stage
solution. Finally, we compare the results produced by P-DVFS with
those produced by the optimal oracle solution and the most advanced
previous work [7].

IV.A. Experimental Setup
We implemented our techniques on a Pentium Dual Core E2220

processor running Linux 2.6.25 and operates at 1.2, 1.6, 2.0, and
2.4 GHz. Experimental results indicate the switching overhead ranges
from 50 µs to 200 µs. We use PAPI 3.6.2 [16] for hardware perfor-
mance counter measurement and experimentally determined that the
performance overhead for accessing hardware performance counter
is negligible. Due to hardware limitations, we can only sample
two architectural events at a time. Therefore, we time multiplex
architectural event sampling to obtain all the values needed for power
calculation. The switching interval is 10 ms and five architectural
event counters are monitored, yielding a scaling period, (Tscaling )
of 30 ms. The control period Tcontrol is set to 1 s, i.e., we solve
the MCKP formulation every 1 s such that we can obtain a stable
MPI distribution and capture changes in memory access behavior
quickly enough for accuracy. We use a sliding window of 2 s to
build the MPI distribution histogram. 15 MPI slots are used to
permit different memory access behaviors to be distinguished while
controlling MCKP solver overheard. We experimentally determined
that energy consumption is relatively insensitive to changes in the
number of MPI slots: a variation of less than 0.5% in total energy
was observed when varying the number of slots from 5 to 30. The
same MPI slots are used throughout the execution of a benchmark.

To determine power consumption, we use a Fluke i30 current
clamp on the 12 V processor power supply lines, the output of which
is sampled at 10 kHz using a National Instruments USB6210 data
acquisition card. This approach permits processor power consumption
measurement without requiring printed circuit board rework or access
to internal metal layers. An on-chip voltage regulator converts this
voltage to the actual processor operating voltage. We assume a
regulator efficiency of 90%.

IV.B. Comparison with Prior Work
Choi et al. [7] proposed a fine-grained runtime DVFS technique

that minimizes energy consumption while meeting soft timing con-
straints. We will use “F-DVFS” to refer to their technique. In order to
adapt to changes in the rate of off-chip accesses, F-DVFS dynamically
constructs a performance model and uses it to calculate the expected
workload for the next slot; frequency and voltage levels are adjusted
accordingly. F-DVFS ignores long-term behavior such as the total
application execution time. For example, at each scaling point,
it considers only an immediate, local, user-specified performance

TABLE I
PERFORMANCE DEGRADATIONS OF F-DVFS AND P-DVFS IN TERMS OF

TOTAL EXECUTION TIME

Benchmark F-DVFS (%) P-DVFS (%)
Goal 5% 10% 15% 20% 5% 10% 15% 20%
gzip 0.27 0.34 1.36 10.59 4.74 8.03 10.82 16.62
vpr 0.00 1.91 10.06 11.62 4.83 9.93 14.05 19.39
mcf 2.02 4.51 6.61 7.78 4.50 6.50 13.50 17.00
bzip2 0.51 0.62 0.67 17.9 3.11 6.09 10.76 15.36
twolf 0.0 1.87 16.31 17.9 4.13 7.92 12.40 17.23
art 0.0 4.47 5.20 5.85 3.09 6.85 13.16 16.83
equake 0.0 0.0 0.0 9.64 3.04 7.59 11.72 15.42
ammp 0.23 0.93 7.18 16.13 4.24 10.40 14.41 19.29
facerec 0.0 4.09 10.12 20.2 3.19 7.65 13.65 18.38
sphinx3 0.0 0.54 1.48 9.34 2.80 7.50 11.10 13.84
tachyon 0.0 5.91 6.83 16.4 3.22 8.41 13.57 18.43
Average 0.28 2.29 5.98 13.03 3.72 7.90 12.65 17.10

constraint. However, sometimes even setting the frequency to the
lowest level still results in a performance level higher than the user-
specified constraint due to large number of off-chip accesses, opening
the opportunity to improve energy savings when the MPI becomes
lower later during execution. Neglecting total execution time makes
it impossible to take advantage of such energy saving opportunities.
Note that this sort of time-varying application behavior is very
common for scientific computing applications, which commonly read
a large amount of data into memory before processing. Moreover,
F-DVFS neglects the relationship between frequency and energy
consumption, assuming that reducing frequency is always beneficial
to energy. However, this is not true when leakage power consumption
is significant or the overall optimization goal is to minimize sys-
tem energy consumption instead of processor power consumption.
In contrast, P-DVFS automatically models and optimizes leakage
power consumption and can be easily extended to handle the energy
consumptions of other components such as main memory and disk.

IV.C. Experimental Results
We evaluated P-DVFS on the 8 SPEC2000 benchmarks that com-

piled on our evaluation platform and 3 ALPBench benchmarks [17],
[18]. We did not consider the remaining 2 benchmarks (“MPGenc”
and “MPGdec”) in the ALPBench benchmark suite because they are
very disk I/O intensive: we are presently interested in evaluating the
impact of off-chip memory access on energy savings. We considered
3 floating point programs and 8 integer programs. The execution time
of each benchmark ranges from 40–425 s. For each benchmark, we
specify a performance degradation ratio (the maximum increase in
execution time relative to that at the maximum frequency and voltage)
ranging from 5% to 20% with a step of 5%. The actual execution time
and the average energy savings are reported compared to a scheme
without DVFS (N-DVFS), F-DVFS, and the optimal oracle solution;
we use the same window size for each to permit a fair comparison.
Both techniques use 4 discrete frequency levels.

Table I shows the actual performance degradation for both F-DVFS
and P-DVFS compared with the user-specified performance degrada-
tion ratios. The first column specifies the benchmarks we evaluated.
The “P-DVFS” and “F-DVFS” columns indicate the performance
degradation ratios resulting from using the two techniques, with
the user-specified performance degradation constraint listed on the
second “Goal” row. Given that the performance constraint is satisfied,
a larger performance degradation usually corresponds to more energy
savings; this was confirmed by our experiments. Experimental results
indicate that P-DVFS approaches the user-specified performance level
more closely than F-DVFS, implying greater energy savings. P-DVFS
has finer-grained control over the trade-offs between performance and
energy given a user-desired performance constraint. F-DVFS does
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Figure 2. Processor frequency as a function of the number of instructions retired for (a) the oracle solution, (b) P-DVFS, and (c) F-DVFS for “mcf” with a
performance degradation ratio of 20%.

TABLE II
DEVIATION OF ENERGY CONSUMPTIONS FROM THE OPTIMAL SOLUTION

WHEN USING USING N-DVFS, F-DVFS, AND P-DVFS

Benchmark Eopt (J) N-DVFS (%) F-DVFS (%) P-DVFS (%)
gzip 804 7.88 6.88 0.12
vpr 1520 21.91 8.09 3.36
mcf 2401 71.10 29.86 4.83
bzip2 1345 8.18 1.93 0.30
twolf 5281 12.61 1.50 1.38
art 1810 52.49 23.20 4.42
equake 2736 14.58 7.20 1.90
ammp 7344 12.15 2.08 0.14
facerec 2621 12.59 6.37 0.04
sphinx3 1428 19.54 11.13 3.64
tachyon 2210 15.43 9.55 0.05
Average 2682 22.59 9.80 1.83

not reach the user-specified performance degradation ratio partially
because the number of available frequencies is limited: whenever
the calculated frequency fcalc does not correspond to any available
frequency, F-DVFS uses the closest frequency that is larger than
fcalc to approximate it. This may reduce the energy benefit when
the number of available frequency is small. Switching between two
closest available frequencies may address this problem. However,
there are more fundamental reasons why F-DVFS does not work
as well as P-DVFS, as we will explain later in this section. Note
that both techniques may violate the soft timing constraint due to
inaccuracies in the online performance model. However, for P-DVFS,
the maximum violation for these benchmarks is less than 1%, which
could be eliminated by using a 1% guard band for the constraint.

We compared the energy savings of N-DVFS, F-DVFS, and P-
DVFS with those of the optimal oracle solution, which might be better
than the actual optimal on-line solution. For performance degradation
percentages of 5%, 10%, and 15%, N-DVFS generates solutions that
deviate from the optimal solution by 9.31%, 12.81%, and 18.46%,
with maximum deviations of 22.29%, 33.72%, and 56.55%; F-DVFS
leads to energy consumptions that deviate from the optimal solution
by 7.1%, 8.23%, and 9.51%, with maximum deviations of 16.84%,
15.89%, and 29.8%; and P-DVFS results in energy consumptions
that deviate from the optimal solution by 1.43%, 1.16%, and 1.59%,
with maximum deviations of 2.80%, 3.88%, and 4.63%. Since
the results are similar for different performance degradation ratios,
we only present the energy numbers for a maximum performance
degradation ratio of 20% in Table II. The first column specifies
the application being evaluated. The second column indicates the
optimal, i.e., minimum, energy consumption for each benchmark
with a performance degradation ratio of 20%. The third, the fourth,
and the fifth columns represent the deviation in energy consumption
from that of the optimal oracle solution when using N-DVFS, F-
DVFS, and P-DVFS. As indicated in Table II, the energy consumption
deviates from the optimal oracle solution by 22.59% on average
when no DVFS is used, with a maximum deviation of 71.1%. F-

DVFS produces solutions that deviate 9.80% from the optimal oracle
solution on average, with a maximum deviation of 29.86%. Among
the three candidates, P-DVFS achieves the best solution quality, i.e.,
an average of 1.83% deviation from the optimal oracle solution with
a maximum deviation of 4.83%. Therefore, we conclude that P-DVFS
can very closely approximate optimal solutions. It is also worth noting
that for performance degradation ratios of 5%, 10%, 15%, and 20%,
P-DVFS has average power savings of 8.3%, 11.31%, 12.3%, and
9.93% and maximum power savings of 15.94%, 12.69%, 27.36%,
and 25.64% compared to F-DVFS.

For benchmarks “mcf” and “art”, F-DVFS leads to solutions
that are far worse than those using P-DVFS (25.03% and 18.78%
difference, respectively). We now analyze their results for these
benchmarks.

Analyzing Mcf Results: Figure 2 illustrates the dynamic pro-
cessor frequency changes for the optimal oracle solution, P-DVFS,
and F-DVFS during execution of the “mcf” benchmark, given a
performance degradation ratio of 20%. The X-axis indicates the
number of billion instructions retired and the Y-axis indicates the
frequency. Figure 2(a) suggests that the optimal solution is to always
set the frequency to the lowest level. While P-DVFS yields a near-
optimal solution, F-DVFS behaves very differently. We note that
“mcf” is a two-phase benchmark: the cache miss rate is very high
during the first 20 billion instructions and alternates between a high
value and a low value afterwards. In both phases, F-DVFS leads to a
higher frequency on average. Recall that F-DVFS requires accurate
model estimation and accurate individual coefficients so that it can
correctly estimate the ratio of off-chip to on-chip memory accesses.
Although the former is generally true for linear regression, the second
assumption does not necessarily hold. In this case, since the MPI and
CPI values do not change much in the first phase, the coefficients
derived using linear regression can be inaccurate, causing F-DVFS to
significantly over-estimate the average on-chip latency and thus limit
itself to a relatively high frequency (2 GHz). Note that the output
of the performance model, or CPI, is still accurate. In contrast, P-
DVFS only requires that the output of the model match the real CPI
value: the individual coefficients in the regression formula do not
matter. Therefore, P-DVFS allows the CPU frequency to be decreased
to a lower level, alternating between 1.6 GHz and 1.2 GHz most of
the time. The frequency does not stay at the lowest level due to
inaccuracies in the online performance model and the remaining
execution time predictor. In the second phase, F-DVFS increases
the frequency when the cache miss rate is lower and decreases the
frequency when the miss rate is higher. This happens because F-
DVFS considers only immediate application behavior and ignores
long-term behavior. P-DVFS takes history and long-term behavior
into account, allowing it to correctly determine that the frequency
can be set to the lowest level even when the cache miss rate is low.
Therefore, P-DVFS achieves much larger energy savings in this case,
which approach those of the optimal oracle solution.
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Figure 3. Processor frequency as a function of the number of instructions retired for (a) the optimal solution, (b) P-DVFS, and (c) F-DVFS during “art”
execution with a performance degradation ratio of 20%.

Analyzing Art Results: Figure 3 illustrates the dynamic processor
frequency changes for the optimal oracle solution, P-DVFS, and F-
DVFS during the execution of the “art” benchmark, given a perfor-
mance degradation ratio of 20%. P-DVFS closely approximates the
optimal oracle solution and F-DVFS does not. This can be explained
as follows. “Art” has periodic cache access behavior with a period
of approximately 300 ms at the highest frequency. In each period,
the MPI value starts from a low value (0.003 in our experiments)
and gradually increases before it reaches the point with the highest
MPI (0.005 in our experiments). Then, the MPI value starts to
decrease until it returns to the previous value of 0.003. F-DVFS
gathers the sampling points within the most recent second to build
the performance model. The coefficients in the regression formula
remain nearly constant due to the small period and large window
size. Therefore, the frequency was set to a fixed number (2 GHz in
our case) for all the sampling points in each period. In contrast, P-
DVFS builds the MPI distribution based on the sampling points from
the most recent second, translates the energy minimization problem
into an MCKP instance, and solves it to get the optimal solution.
This solution uses high frequency (2 GHz) for sampling points with
low MPI and low frequency (1.2 GHz) for sampling points with
high MPI. This permits significant reduction in energy consumption
compared to F-DVFS. Since F-DVFS is not distribution-oriented, it
cannot determine how SPI and power consumption change with MPI.
Therefore, it cannot assign different frequencies to sampling points
with different MPIs while still meeting the performance constraint.

For the rest of the benchmarks, P-DVFS slightly outperforms F-
DVFS. This is because both consider the effects of off-chip memory
access latencies on energy. P-DVFS achieves the greatest energy
savings compared to past work for applications with phases during
which the energy cost per instruction differ.

V. CONCLUSIONS

This paper has described a new power state control technique
that adapts to the time-varying memory access behaviors of appli-
cations. We first proposed a two-stage DVFS algorithm based on
formulating the throughput-constrained energy minimization problem
as a multiple-choice knapsack problem (MCKP), assuming a priori
characterization-based or oracle knowledge of application behavior.
This algorithm builds on an application phase-dependent power
model, which can be constructed offline using processor hardware
performance counters. We then present an online DVFS technique,
called P-DVFS, that predicts remaining execution time in order
to control voltage and frequency to minimize energy consumption
subject to a soft performance constraint. P-DVFS requires no a priori
knowledge of application behavior. P-DVFS also uses a model that
accurately captures the relationship between performance and off-
chip memory access rate. These two models, combined with an
execution time predictor, allow us to formulate the energy minimiza-
tion problem as a multiple-choice knapsack problem, which can be

efficiently and optimally solved online. Experimental results indicate
that given a performance degradation ratio of 0.2, P-DVFS leads to
energy consumptions within 1.83% of the optimal oracle solutions
on average with a maximum deviation of 4.83%, whereas the most
advanced related DVFS control technique (F-DVFS) results in energy
consumptions within 9.80% of the optimal oracle solution on average
with a maximum deviation of 29.86%. For the same performance
constraint, we found that P-DVFS also reduces power consumption
by 9.93% on average and up to 25.64% compared to F-DVFS. These
energy and power savings are all directly measured on a real system.
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