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Abstract 

  
Client-server architectures have been used for years, and many modern applications rely on this 
approach to be able to present rich and complex information to users without needlessly 
encumbering their local device with computation, and also to be able to keep all data in a (more-
or-less) centrally available location, as well as allowing for multiple applications to share data. 

When an application has many users, the application backend must have systems in place for 
dealing with variations in traffic. Modern systems have been designed from the perspective of 
trying to maintain an appropriate amount of capacity at the backend (including “spare” capacity 
to handle spikes of traffic). Put plainly—these systems are designed to be able to respond to 
incoming requests with an acceptable latency given an unknown workload. 

Moreover, in systems such as these it is assumed that latency at the end-user must be minimized 
as far as possible, and that any increase will negatively impact user satisfaction, and thus also 
impact the bottom line of the application provider. In this dissertation, I explore the relationship 
between increased latency in cloud-backed mobile applications and user satisfaction. 
Furthermore, I explore the effects of environmental contextualization, that is, leveraging the 



emerging cultural trend of being environmentally friendly as a moral good, in shaping the 
perception of satisfaction with performance. 

I have designed and conducted several user studies designed to test all of these relationships, and 
found surprising and novel results through each of them. Through these studies I show that users’ 
tolerance for delay (which I term the delay tolerance envelope is much higher on mobile 
platforms than generally believed. Additionally, users are not willing to change their behavior 
based on the belief that changes would result in more environmentally sustainable outcomes at 
datacenter backends, but that even simple group pressuring methods, which allow a user to 
compare their environmental friendliness to others, can increase their willingness to change. 
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Abstract

Controlling Green Users

for

A Happier Cloud

Maciej Święch

Client-server architectures have been used for years, and many modern applications rely

on this approach to be able to present rich and complex information to users without

needlessly encumbering their local device with computation, and also to be able to keep

all data in a (more-or-less) centrally available location, as well as allowing for multiple

applications to share data.

When an application has many users, the application backend must have systems in

place for dealing with variations in traffic. Modern systems have been designed from

the perspective of trying to maintain an appropriate amount of capacity at the backend

(including “spare” capacity to handle spikes of traffic). Put plainly—these systems are

designed to be able to respond to incoming requests with an acceptable latency given an

unknown workload.
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Moreover, in systems such as these it is assumed that latency at the end-user must be

minimized as far as possible, and that any increase will negatively impact user satisfac-

tion, and thus also impact the bottom line of the application provider. In this dissertation,

I explore the relationship between increased latency in cloud-backed mobile applications

and user satisfaction. Furthermore, I explore the effects of environmental contextualiza-

tion, that is, leveraging the emerging cultural trend of being environmentally friendly as

a moral good, in shaping the perception of satisfaction with performance.

I have designed and conducted several user studies designed to test all of these rela-

tionships, and found surprising and novel results through each of them. Through these

studies I show that users’ tolerance for delay (which I term the delay tolerance envelope

is much higher on mobile platforms than generally believed. Additionally, users are not

willing to change their behavior based on the belief that changes would result in more en-

vironmentally sustainable outcomes at datacenter backends, but that even simple group

pressuring methods, which allow a user to compare their environmental friendliness to

others, can increase their willingness to change.
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Chapter 1

Introduction

In many modern user-facing applications, the common model is a client-server one, in

which clients are the applications running on a device, used by users, and served by back-

end datacenters, or servers. By datacenter here I mean a large group of networked com-

puters, typically located in one physical location, and tasked with either storing data or

computing responses to incoming requests, often performing computing over the data

stored. Client devices request either data, whether that be raw data such as images or

text, or request computation, such as translations of text into another language or finding

a person’s most related friends. As the applications become more complex, the servers

begin to turn more into services, with an ever-increasing amount of processing and stor-

age being pushed onto the backend, in order to be able to guarantee control over storage,

minimum performance requirements, and allowing for any data analysis to be done in a

central location, while providing ever-more complex features and content to the clients.

In practice, this ends up turning into client-side interfaces that are mainly responsible for

requesting information from the server-side, and providing users with means of more

interesting or relevant request.
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As both the cost of serving requests – whether in size of data to be fetched, or in com-

putational complexity of processing the request – increases, and the pool of users creating

requests increases, scheduling requests in the datacenter becomes an increasingly harder

problem. Datacenters typically have a Service Level Agreement, or SLA, that specifies an ac-

ceptable amount of time in which requests must be satisfied. Given that incoming work-

loads are unknown a priori, and that the SLA must be kept even during unanticipated

periods of high request rate, many datacenter management methods end up sacrificing

energy efficiency.

1.1 Glossary

In order to make clear the terminology I use throughout this work, I will now define the

various terms I use.

• Delay Tolerance Envelope: The amount of user interface or network delay that a user

can be exposed to without irritation, e.g. if a user’s satisfaction with an application

remains unchanged for up to 500ms of delay, we would consider that to be their

envelope.

• Environmental Friendliness: Any effect which reduces the environmental impact of

a datacenter. In the context of this work, this translates into lowering the energy

usage of datacenters.

• Environmental Prompting: By using specific language during both user study and

task instructions, we aim to connect degradation in performance with environmen-

tal friendliness. The goal of this connection is to evaluate the willingness of a user to
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alter their behavior in order to increase their environmental friendliness. Based on

whether or not a study subject received this prompting, we refer to them as being:

– Nongreen: Study subjects who did not receive any environmental prompting

are referred to as nongreen subjects.

– Green: Study subjects whose instructions included environmental prompting

are referred to as green subjects.

• Peer Pressure: By presenting the aggregate performance of a user’s peer group to

that user, the user’s behavior may be changed or influenced, especially if the per-

formance of the group is higher than that of the user.

– Trailing Group: Study subjects for whom the group delay average was shown

to consistently be at a high level are referred to as being in the trailing group,

as their normal delay setting is likely to trail behind the group.

– Leading Group: Study subjects for whom the group delay average was shown

to consistently be at a low level are referred to as being in the leading group, as

their normal delay setting is likely to be leading ahead of the group.

• User Trace Regions: During some of the user studies, we collect traces of a subject’s

delay setting, which is the amount of delay we introduce into the application that

the subject is completing tasks on. These traces are 10 minutes long, and we refer to

them by the following region names:

– Familiarization: The first 2 minutes of the trace. During this time, the delay is

set at 50%, and the subject is asked not to change the delay setting.
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– Considered: After the first 2 minutes, the subject is allowed to change their de-

lay setting, and is asked to set it as high as they are comfortable with while

accomplishing the tasks for the current application. The subject may be envi-

ronmentally prompted at this point.

– Reconsidered: At 6 minutes into the trace, the subject receives a reminder that

they have the ability to control their delay. This reminder does not tell the

subject to increase or decrease their delay, nor does it include any environmen-

tal prompting, it simply notifies the subject that they still retain control over a

portion of their experience.

– Total: This is the total duration of the trace during which the subject is allowed

to control their delay setting, which lasts from the beginning of minute 2 to the

end of minute 10 of the trace.

• Peer pressure interface variants: We worried that presenting users with a peer pres-

sure and control interface at all times might become too distracting, so we created

two variants which we refer to as:

– Visible: In this variant the peer pressure interface is visible at all times, and

allows direct control from the user at all times.

– Hidden: In this variant, the interface is only visible during inactive times of a

user study, which allows users to concentrate on the current task, but also both

control their delay and be shown the group aggregate between tasks.

• Cultural differences: The potential effect of cultural trends and/or beliefs on the will-

ingness of users of different cultures to alter their behavior to effect more environ-

mentally friendly outcomes.
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• Virtue Signaling: A method of communicating the “value” or “amount” of behav-

ioral changes a user is currently undergoing to an outside entity, whether that is to

a specific group of people or to the outside world at large.

1.2 Mobile applications

In 2013, the Pew Research Group estimated that 56% of Americans owned a smartphone,

with adoption steadily rising [21]. By smartphone I mean any cellular telecommunica-

tions device that has modern features such as a screen with input capabilities, access to

the internet (whether over WiFi or cellular network), and an operating system that en-

ables it to run programs or applications made available that extend the capabilities of

the device. As these smart devices become more ubiquitous, it is only natural that the

client-server model be extended to applications, and indeed in 2013 Apple announced

that their application store contained over 800,000 applications [65]. Many services that

initially created mobile-friendly versions of their web services have also transitioned to

making standalone applications which offer a faster and more consistent user experience,

such as the Facebook application.

As an example, consider making a modern user-facing cloud application such as Pin-

terest more energy or economically efficient. The application consists of a user interface

(the frontend), for example an app on a smartphone, that communicates with the core ap-

plication and systems software (the backend). The backend runs in the remote datacenters

and the network that are the physical underpinnings of the cloud. User interactions with

the frontend result in requests to the backend.
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1.3 User satisfaction in the loop

This dissertation is framed in the context of the Empathic Systems Project, whose high-

level proposition is that by bringing user satisfaction as a global feedback input to re-

source management in any finite system will result in better resource allocation and us-

age. A resource here is any finite thing being allocated, such as bandwidth, processing time

/ power, or power, and users here simply are any people that are consuming the resource.

Previous work has found that by not trying to allocate for the “average” user, and instead

letting the user inform the system of their satisfaction with their resource allocation, and

apportioning the resource appropriately so as to not annoy any users, will satisfy users,

with a lower overall usage of that resource compared to standard techniques.

1.4 Optimizing for the user

As mentioned above, datacenter management is designed to satisfy the agreed upon SLA.

The SLA is an easy metric for determining performance that is acceptable for the canonical

user, and all changes to datacenter management must not irritate this user. However,

there has been work done to suggest that individual user delay tolerance, that is, the

amount of interface or network delay that can occur before a user becomes irritated, can

vary highly for individual users [122]. Moreover, the work shown in this dissertation

illustrates that even aggregate delay tolerances are much higher than generally believed. I

show with a proof of concept traffic shaping scheme that meaningful changes can be made

to the characteristics of user request flows while staying within the acceptable tolerances

of users.
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1.5 Workload at the datacenter

Many different methods of datacenter scheduling and load balancing have been proposed

in the literature, which are further discussed in Chapter 9, all of which are made necessary

by the unknowable nature of incoming request streams. Many factors influence the nature

of request streams. Wave-like surges of requests cause by the so-called “slashdot effect”,

or more recently viral blog posts and videos, which create a huge instantaneous demand

for a resource, or even by live events, mean that datacenters need to be prepared to deal

with huge spikes of incoming traffic at any given point.

1.6 Datacenter sustainability

As datacenter-backed applications become more ubiquitous and more complicated, so

too must the datacenters expand to be able to service the feature-rich clients they back.

As mentioned previously, real-world datacenters tend to handle incoming requests by

overprovisioning resources, which leads to wasted energy. In 2007 the EPA estimated

that datacenters consumed 61 terawatt-hours of energy in 2006, 1.5% of the total U.S.

consumption, that datacenters were the fastest growing electricity consumers, and that

an additional 10 power plants would be required for this growth by 2011. For financial

and environmental reasons, there is a large amount of interest in approaches that make

the datacenter more sustainable.

Datacenters bring up or shut down hardware to accommodate the offered load of the

requests from the application’s users. The assumption that offered workloads cannot be

changed puts major constraints on the possible policies to drive these mechanisms and

what they can do. It is clear that a given offered load combined with uniform performance
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requirements will place a lower limit on how many machines need to be active, regardless

of policy. Less obviously, the properties of the requests, for example the interarrival time

distribution, request size distribution, and any correlations will affect the dynamics of

the request stream and thus how much headroom (additional active hardware) the policy

needs to preserve.

1.7 Environmental prompting

One of the premises of my work is that by contextualizing users of environmental infor-

mation, that is, making them aware that a slight degradation in performance has mean-

ingful impacts on the environmental friendliness of their behavior, could increase their

delay tolerance envelope. We find that, at least at this point in time, and for study popu-

lations based in the United States and China, environmental prompting is not a powerful

enough force to enact behavioral changes.

1.8 Virtue signaling and peer pressure

One of the issues with environmental prompting is that although it was designed to

have users associate degradation of performance with environmental friendliness, per-

haps such “virtuous” behavior at an individual level is not enough to effect changes.

Perhaps what is needed is for a user to be able to compare, or even broadcast their virtue

level to the outside world for everyone else to see. In my work I will show the efficacy of

using peer pressure to let users compare their virtue to that of their surrounding group,

and lay out ideas for ways that users could signal their virtue to others.
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1.9 Thesis

The process of delivering information, computation, and overall experience to end-users of cloud-

back mobile applications has many tradeoffs in trying to ensure that the end-user experience is

satisfactory for all users while keeping operating costs low. I claim that the tolerance for delay

for end-users is higher than generally believed, with delays as high as 750ms not producing a

noticeable loss in satisfaction. Moreover, I claim that by prompting users with environmental

information, creating an association between delay and environmental friendliness, and allowing

users to compare their environmental friendliness to that of others, this delay tolerance can be

further expanded. This tolerance gives some headroom for shaping user traffic workloads such that

they benefit datacenter management while not irritating users.

1.10 Joint work with Peking University

In the process of design and implementing the user studies of Chapters 3,5, 6, and 7

we found ourselves requiring the ability to quickly and easily augment an deploy An-

droid Applications. I was therefore fortunate to have as my collaborator, Huaqian Cai

from Peking University, who had helped to develop DPartner—a framework which al-

lowed for automated decomposition of arbitrary Android applications, and facilitated

their instrumentation and repacking into applications that could be normally installed on

un-altered Android smartphones. The study design would be informed by the ability of

DPartner to interpose on features, such as inserting delays into desired API calls, and by

its ability to add functionality, such as displaying an overlay interface which could com-

municate both to and from a central controller portion of the framework. Additionally,

2 user studies were conducted at Peking University, and one using the SoJump crowd-
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sourcing framework, both of which were overseen by Huaqian Cai.

A further outcome of this collaboration has included work done on the DelayDroid

system, which allows for the batching of network requests on Android mobile devices, to

reduce energy costs by cutting down on the amount of time that the 3G radios in those

devices spend in what is called the “tail time”, a halfway power state of the radio de-

signed to allow for rapid reconnection to cellular networks. The work for DelayDroid

was performed at both Peking University and Northwestern University, and led to a full

length publication in the Science China Information Sciences Journal in 2016.

1.11 Outline

Figure 1.1 depicts a view of how interactions between mobile end-users and datacenters

occur today, and how I ultimately envision that they could work. The end-users, by na-

ture of using the mobile applications, generate workflows that exhibit a set of characteris-

tics, which are a priori unknown. These workflows go into a shaping mechanism, which is

informed by 2 things: the user delay tolerance envelope, and the desired workload char-

acteristics from the datacenter. The mechanism does its best to shape the workflows to

exhibit the desired characteristics using delay injection while ensuring that these injected

delays do not exceed the limit set by the user envelope. The mechanism sends back in-

formation to users, which, combined with virtue signaling, attempts to increase the delay

tolerance envelop, thus allowing the mechanism to more effectively shape traffic.

I will now describe the overall layout of this dissertation document, and how each

piece fits into this ultimate vision. I began by motivating and establishing my thesis

statement in Chapter 1, laying out my desire to explore the relationship between delay
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Envisioned state end-user and datacenter interactions, with traffic shaping that
is informed by the delay tolerance envelope, and both environmental feedback

and signaling expanding the envelope.

Figure 1.1:

and user satisfaction, and methods for expanding delay tolerance using environmental

contextualization and peer pressuring effects. In Chapter 2, I show that by using delaying

methods in JavaScript running on mobile device browsers, energy savings can be created

on an individual level, while not irritating end users. These findings motivate the need for

exploring the potential for such effects on mobile applications, which form the majority

of user experience on mobile devices.

With this knowledge, I can now ask the question relating to part a). of my vision:

what is the size of the delay tolerance envelope? In Chapter 3 I study the delay tolerance

envelope of users with an in the wild study, and determine that on average delays of up
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to 750ms can be added with no significant impact on satisfaction. In Chapter 4 I describe

the Kermit Shuffle, an initial approach to shaping user traffic to be more Poisson-like us-

ing traces collected from the user study in Chapter 3, and show that we can indeed make

meaningful shaping effects while staying with the delay tolerance envelope. This pro-

vides one possible mechanism by which portion d). of my vision could be implemented.

I now have some evidence about a large delay tolerance envelope among user, and

would like to gather additional evidence of this claim, as well as investigate the effects

of environmental prompting, as seen in portion b). of the vision. Both of these points

are covered in Chapter 5 as we replicate the previous study at Peking University, and

also begin testing the effects of environmental prompting. The outcomes of this study

reinforce the envelope findings of the previous study, and also indicate that, surprisingly,

environmental prompting has no effect on the delay tolerance envelope.

We formulate two hypotheses as to the reason for this: 1. that there could be some

cultural differences between the study populations and 2. that the lack of any sort of

virtue signaling, such as envisioned in portion c). of the vision is what is keeping users

from altering their behavior. We spend Chapters 6 and 7 discussing user studies that

demonstrate that peer pressure mechanisms do indeed produce behavioral changes. In

Chapter 8, I discuss potential approaches to interfaces that would leverage the effects of

virtue signaling, and would be informed by user satisfaction. I conclude the dissertation

in Chapter 10, listing major contributions and potential avenues for future works. Ap-

pendices included describe work that I did over the course of my doctoral work that was

not directly related to this thesis.
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Chapter 2

Can we introduce delays into user-facing

applications without annoying users?

In this chapter, I describe the work done on the JSSlow proxy, which demonstrates that

there are opportunities for reducing energy consumption of user interfaces on smart-

phones, and that they can be approached by introducing delays at the user interface level

with minimal impact on user-perceived satisfaction. The result of this work was pub-

lished as a full paper at the MASCOTS conference in 2013.

Modern web sites and web applications include a significant client-side component

written in the JavaScript language and interpreted by the browser. The client-side code

can manipulate the HTML document via the Document Object Model (DOM), allowing,

for example, dynamic page updating, page animations, enhanced controls, and other in-

teractive elements. More generally, JavaScript provides a portable Turing-complete exe-

cution model for a high-level scripting language augmented with the capabilities of the

browser. The popularity of systems such as Google Documents shows that even complex

applications, such as office tools, can be highly effectively implemented in this model.
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YouOS demonstrated the extremes the model enables, creating an extensive desktop en-

vironment within the model.

Because of the centrality of JavaScript, an important focus of research and develop-

ment has been on how to execute it faster, including projects such as the Google Closure

Compiler [52], which tries to increase JavaScript efficiency and eliminate potential bugs.

This is challenging because JavaScript is a dynamically typed language with high-level

features, such as eval, that generally require interpreted execution. However, it is also im-

portant, as the execution model from the perspective of a single page is an event-driven

model without threads. While this may simplify application programming because con-

currency is not exposed to the developer, it means that a badly-written event handler

can block others, degrading the user experience, and in the worst case can result in the

browser presenting an “unresponsive script” warning to the user. A well-written event

handler running too slowly can result in similar issues.

On a mobile platform, the questions of power, energy, and battery lifetime complicate

matters. Slower execution of proper JavaScript may reduce power, and given that inter-

nal event generation drives JavaScript execution together with external events, slower

execution might also reduce energy and enhance battery lifetime due to less work over-

all. Finally, slower execution of buggy or peripheral JavaScript might reduce its ability to

waste energy and degrade the user experience. Previous work [126] has shown that total

JavaScript energy (from transmission and rendering) constitutes a significant portion of

energy used during mobile browsing, e.g. 16% on Amazon.com or 20% on YouTube.com.

We claim that on mobile platforms JavaScript interpretation is generally faster than is

necessary to maintain a satisfactory user experience, and we propose that JavaScript im-

plementations include a user-configurable throttle. For many sites and users, the throttle
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can simply be set to a uniform level that will reduce power compared to today’s open-

throttle setting, while not affecting the user experience. For some sites and users, the

throttle is needed so that the user can determine his own trade-off between power and

experience.

To evaluate our claims we developed a web proxy system, named JSSlow, that rewrites

JavaScript passing through it using the continuation-passing style. Leveraging this, our

system introduces what are effectively “sleep” calls into the JavaScript interpretation pro-

cess, despite the fact that JavaScript has no native sleep functionality. The occurrence of

these sleep calls and their arguments constitute the JavaScript throttle mechanism. The

throttle is itself set via a global variable.

JSSlow is intended as a proof-of-concept for a JavaScript throttle, and certainly other

alternatives, such as changes to the JavaScript interpreter itself, may be simpler. JSSlow

does have the benefit of allowing any user direct access to the throttle functionality simply

by using our proxy. It also doesn’t require any client or server changes, making it easier

to study our overall claim.

Using JSSlow, we conducted three studies with an Android mobile phone as the client

device. In the first study, we evaluated the power and energy savings that the throttle can

provide when faced with buggy JavaScript and advertising JavaScript. Not surprisingly,

the benefits are quite substantial. In the second study, we considered the power and

energy savings that the throttle, with a default setting, can provide for the top 120 web

sites. We found an average power savings of 6%, with some sites showing significantly

higher savings. That is, the introduction of JavaScript throttle reduces power across the

board and has particularly strong effects for buggy or exploitative JavaScript.

Our final study was a user study in which we had participants come to our lab and
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carry out tasks using several common web sites/applications on an Android phone, both

with and without the JSSlow throttle (with the default setting) active. During the tasks,

we measured both articulated user satisfaction and power. We found that for common

tasks like commenting on articles or Facebook, there was little difference in satisfaction

between the two cases. For fine-grain interactive tasks, such as a game, the impact on

user satisfaction varied considerably, suggesting that making the throttle visible in such

cases would be preferable.

The primary contributions of this work are as follows.

• We identify an opportunity for reducing mobile device power by throttling Java-

Script execution.

• We present the design and implementation of a mechanism for such throttling, the

transcoding JSSlow web proxy.

• We show that JavaScript throttling can have a major effect on reducing the power of

buggy and advertising JavaScript, reducing these by 52% and 10%, respectively.

• We show that JavaScript throttling, at a default, non-aggressive level, leads to sig-

nificant power reduction for the top 120 web sites. The average power is reduced

by 6%.

• We show that JavaScript throttling, at a default, non-aggressive level, has little effect

on user satisfaction for several common tasks. It does have an effect on highly in-

teractive tasks, but the effect appears to be highly user dependent, suggesting that

the throttle setting needs to be exposed to the user in such cases.

• We discuss alternative methods for implementing JavaScript throttling.
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The chapter is structured in the following way. We begin in Section 2.1 by describing

the JavaScript execution model and its uses from the perspective of our claims. Section 2.2

then describes the design and implementation of the JSSlow proxy. Section 2.3 describes

the testbed setup that we have used for all three studies. In Section 2.4 we present the

outcomes of our studies of buggy JavaScript and of the top-120 sites. Section 2.5 then

presents the results of our study of user satisfaction. We then step back to consider the

results, describing alternative ways in which a JavaScript throttle could be implemented

and presenting recommendations in 2.7. Finally, Sections 3.4 concludes our discussion.

2.1 Why sleepy JavaScript?

JavaScript is a dynamically typed, object-oriented scripting language developed by Bren-

dan Eich. It is implemented by modern web browsers in order to create rich, dynamic

web pages. The syntax and semantics of the language are a superset of ECMAScript Edi-

tion 3 [37], although each browser implements its own interpreter, and therefore, version

of the language. The typical model for JavaScript execution is event-driven, allowing web

pages and applications to respond to user input. JavaScript follows the common model

of registering event hooks such as onClick(), and assigning event handlers to be invoked

as a result of events coming in.

In this chapter we examine two popular open-source JavaScript engines - V8, which is

written and maintained by Google, as well as SpiderMonkey, which is one of the engines

written and maintained by the Mozilla foundation. Since all of the testing we did was

done on Android phones using the stock browser, all of our results show the impact of

throttling on JavaScript being run by V8.



35

JavaScript power usage

We argue that JavaScript is being run faster than necessary on a mobile platform, and

that it is possible to reduce power with little to no effect on the user experience simply by

slowing down this execution. While our focus is on reduced power, we feel that reducing

power may also lead to reduction in energy (and thus an increase in battery lifetime).

This may seem counter intuitive at first cut, let us consider the energy of a task to be

defined as:

Energy = Timerun × Powerrun

This model is commonly believed to exhibit the following property: as the execution

rate of the task increases, the power grows and the execution time shrinks, but more

importantly, the execution time shrinks at a much faster rate. The implication is that

given fixed tasks, the best strategy is to execute them with as high a rate as possible.

Computational sprinting [102], where execution rate is raised even beyond sustainable

thermal limits for brief periods of time, is the extreme example of this “race to finish”

approach.

This analysis makes sense for some workloads and tasks, for example, the image

recognition kernel in [102], and perhaps the UI controls on the platform (Section 2.5),

but it may not capture the event-driven nature of JavaScript execution for a web page

or application. Here, the workload is likely to be continuously arriving, and in many

cases, users may not be concerned with the speed at which individual tasks complete, or

even if they complete. Most importantly, fast execution of JavaScript workload may well

introduce additional tasks, which themselves require more energy to execute.

Consider a user visiting a page. The user will interact with the page for a given interval
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of time, which we call a dwell time. Given a fixed perceived performance of the page, the

user’s interaction with the page will not change. However, if we lower the execution rate

of the JavaScript, we will reduce the power, and reduce the amount of work that needs

to be done over the dwell time. Suppose there is an advertising animation on the page.

Slowing down the animation’s execution will be unlikely to change the user’s interaction

or satisfaction, but we will have fewer updates to perform over the dwell time, and each

update will be done at lower power. Put simply, because the user’s perception of the

page has not changed, the time spent on the site has not changed either, and thus any

reductions in power directly translate to reductions in energy. For our argument to hold,

we must not alter user behavior, which is why we are so interested in not changing the

satisfaction that users have with the websites.

Perhaps more interestingly, we found that energy reductions occurred with the addi-

tion of any amount of sleep into the JavaScript code. Our best guess for this is that this

allows the JavaScript interpreter to issue a sleep system call, and put the underlying ker-

nel into its idle loop, thus allowing the processor to halt and go into a lower power state.

Combining this with the reduction of work done over the same dwell time of the user,

we can reduce the power consumption of a browsing session. Given this, our goal is to

convince the JavaScript interpreter to slow down in such a way as to reduce power. In

other words, we need to convince the JavaScript interpreter to go to sleep.

2.2 JSSlow proxy

The proxy that we have developed, JSSlow, works by examining the body of HTML pages

that pass through it, identifying key structures of interest in both embedded JavaScript



37

Host

Client

Proxy

BeautifulSoup

      object

"sleep call"

  insertion

JSS

TameJS

Figure 2.1: JSSlow system design.



38

code as well as in referenced JavaScript code. Within these structures, for example loop

bodies, the proxy inserts the equivalent of calls to a “sleep” function. In this way, we

are able to slow down the execution of scripts by ensuring that any code likely to be

run repeatedly will have to run our sleep call as well. There were two key difficulties

in applying this transformation to scripts, (1) JavaScript does not contain a native sleep

call, and (2) the JavaScript code is run a single-threaded context. As we noted in the

introduction, this is in keeping with JavaScript’s event-based execution model.

Simulating sleep

A sleep call could be simulated in JavaScript’s event-based execution model through the

use of setTimeout timer mechanism, but, as we will show, this approach requires code size

comparable to execution steps and thus is unsuitable for looping/recursive code, which

is exactly the kind of code we want most to improve. Our adopted approach is to use the

continuation passing programming model, explained in Section 2.2, which is supported

within JavaScript, albeit not widely used. In essence, our invocations of sleep involve

creating a continuation, and then passing that continuation as a timer handler that will

be invoked once the desired sleep period has expired. Until the timer event fires, the

JavaScript engine can execute independent threads for other pages, and, if it is nothing

to do, it will internally await a timer event, using an OS-level sleep() or select() call. It

is the time our page spends in these system calls that reduces the power consumption of

the page.

Transforming ordinary JavaScript code into the desired continuation-passing form is

challenging. To simplify the process, we leverage TameJS, which has been designed to

augment the server-side JavaScript language with more straightforward ways of using
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continuation-passing. By leveraging TameJS on the client-side, we can achieve our goal in

several steps. First, we parse the JavaScript and identify where we want to inject sleep

calls. Next, we inject those calls using the TameJS continuation passing syntax. Finally,

we use TameJS to translate back to standards-compliant JavaScript which we then hand

to the client. Figure 2.1 illustrates the process.

Continuation passing

Continuation passing, a term coined by Steele and Sussman in their paper on the Scheme

programming language [120], is a style of programming in which control flow of a pro-

gram is explicitly managed with continuations.

The core idea of a continuation is that it captures a complete execution state in such

a way that it can be restored at a later time. The continuation is made available at the

programmatic level; that is, the program can itself operate on its own continuations, for

example explicitly restoring them. Of particular note is the so-called “current continua-

tion”, which represents the current execution state. This is often augmented with the no-

tion of “call with current continuation”, which allows for control-flow parallelism within

the program. As an example, an iterator that operates over tree might be written recur-

sively. The iterator’s next() function would use a call with current continuation to restore

the recursive execution context, make one step on the tree, and then return that value with

another call with current continuation back to the caller of next(). In this example, con-

tinuations allow us to marry the straightforward implementation of a recursive traversal

of the tree with in-line iteration over the results of this process. The sharp-eyed reader

might note that this process looks a lot like a multithreaded process, and there is in fact

an equivalence between cooperative multithreading and continuation-passing.
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In the continuation passing style (CPS) of programming, each function takes an addi-

tional argument, namely the continuation that the result of the function will be passed to.

CPS makes several things more explicit than in “direct style”—the flow of code is imme-

diately obvious since the return of a procedure is directly defined, order of evaluation is

explicated since all expressions must be evaluated from the innermost part out, and all

calls become tail calls which allows for optimizations.

Since each function must be augmented to include an extra parameter, trying to write

code in CPS can be error-prone. This approach is sometimes implemented in compilers

such as in Appel and Andrew’s book “Compiling with Continuations” [8] or in TameJS.

TameJS

TameJS [99] is a “source-to-source translator that outputs JavaScript” developed by OK-

Cupid as a JavaScript implementation of the C++ Tame framework [75]. It produces

standards-compliant JavaScript that can then be run by any JavaScript engine. TameJS

was developed with the NodeJS platform [71] in mind. NodeJS attempts to extend Java-

Script to the server side, allowing an application developer to build web applications with

a single language and execution model. In the server context, especially due to network

delays and concurrency among many users, the limited concurrency and cooperative,

event-driven execution model of JavaScript can be particularly limiting. TameJS attempts

to address these limitations by making the continuation passing style much easier to use

within JavaScript code.

TameJS adds two new primitives to JavaScript to facilitate programming with contin-

uations:
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• the await primitive, which is essentially “call with current continuation”, and

• the defer primitive, which essentially invokes the continuation that was passed dur-

ing the call, returning execution state back to the caller.

The combination of await and defer allow for asynchronous callback code to operate like

regular sequential code. The following code illustrates how await and defer are used to

introduce pauses in execution:

for (var i = 0; i < 10; i++) {

await{setTimeout(defer(), 100);}

console.log ("hello");

}

The result of the above code is that “hello” is written to the console 10 times, with a

delay of 100ms between each write. The block of code handed to await immediately

executes, setting a timer that will fire in 100 ms. The await call also packs up the current

continuation, and passes it to the code. The handler the timer event will invoke consists

of the invocation of defer. It is not until the defer is invoked that the previously packed

up continuation is unpacked and restored. At this point, execution continues at the next

statement following the await statement. Most JavaScript engines will implement the

timer delay through select() system calls, giving the kernel the opportunity to put the

processor in a low-power state if there is no other work to do.

If this code were written without the await/defer combination, “hello” would imme-

diately be printed to the console 10 times. Because setTimeout is a non-blocking function,

the JavaScript engine does not wait for it to return before going on to run the rest of the

code. The only way to achieve the desired pause would be to pass console.log as the call-
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back function to setTimeout. This approach can be applied easily in places where we only

want to introduce a single delay, but in order to apply it even to the simple code example

above, each iteration of the loop would need to be its own successive callback to a deeper

setTimeout. That is, we would have to code the 10 iterations of the loop nest separately.

In general, to implement iterated, or nested continuation-passing as in the above ex-

ample in standard JavaScript would require that we syntactically unroll the iteration or

nesting. The beauty of the TameJS await/defer extensions is that this is not needed, which

allows the implementation of continuation-passing programs in the straightforward style

available in other languages that support continuations.

JSSlow

The JSSlow proxy is an extension of a proxy we previously developed to inject JavaScript-

based user interfaces that overlay themselves on existing web sites. The initial proxy,

which itself was an extension of the Tiny HTTP proxy for Python1, was designed to sup-

port studies of user-centric network scheduling for the uplink of home routers and is

described in more detail elsewhere [81]. In this chapter, we generally do not make use of

its ability to to inject new user interface components into the user experience, but rather

as a framework within which we we can carry out transformations of existing JavaScript

code. It implements standard SOCKS proxy semantics and so can be used with any web

browser simply by configuring the browser’s proxy configuration to use it.

JSSlow observes the HTML body of any response that goes through it, and then an-

alyzes and alters that body before returning it to the requesting client. When it has re-

ceived the body of the page, it parses it using Python’s BeautifulSoup library, resulting
1http://www.oki-osk.jp/esc/python/proxy/

http://www.oki-osk.jp/esc/python/proxy/
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in a BeautifulSoup object which is an abstract syntax tree (AST). The AST representation

and the library then allow us to search and transform the tree. The core operation we do

is identify JavaScript code blocks into which we will inject sleep invocations.

Sleep macro implementation

Our sleep is implemented assuming the existence of TameJS, and takes the following form

await { setTimeout(defer(), g_slow); }

where g_slow is a global variable indicating the sleep duration. We generate a special

configuration block to set g_slow at page load time. It can be adjusted at any point later, for

example via a user interface that can also be injected by the JSSlow proxy. It is important

to realize that while g_slow is a throttle, it is a very course grain one. Any significant

g_slow value will typically cause the engine to do a yielding system call, which has a

significant effect on power, even if g_slow is a quite small, nonzero value. Also note that

it is the combination of g_slow and the locations at which the sleep macro is introduced

that constitute the overall throttle. The sleep macro can also be changed to allow for

complete deactivation of the sleep functionality, resulting in behavior virtually identical

to the unmodified code. We discuss alternative methods of throttling in Section 2.7.

Sleep macro injection

The following pseudocode illustrates the process of transforming the AST to include in-

vocations of our sleep macro:

// create AST of the incoming html

html-copy = BeautifulSoup(incoming-html)
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sleep = "await { setTimeout(defer(), g_slow); }"

// iterate over all <script..>..</script> fields

for script in html-copy:

script-copy = script

// fetch local scripts

if script.has_tag("src") && src.is_local():

script-copy = fetch(src.address)

insert-at(sleep, "while")

insert-at(sleep, "if")

insert-at(sleep, "for")

insert-at(sleep, "function")

try:

script-copy = tame-compile(script-copy)

except:

// if compilation failed, just skip

continue

script = script-copy

return html-copy
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In essence, we transform all scripts that are inlined in the page or that are referenced

by the page and exist on the same site. Each script has sleep macros introduced into the

bodies of its of its control structures (while, if, for, and the entry points of functions). The

transformed scripts (including the referenced scripts) are then inlined into the page. If a

transformation or inlining of a script fails, we use the original script.

We currently avoid transforming referenced scripts that are not local to the originating

page’s site. This is because we found that many such scripts would require more subtle

transformations in order to be successfully inlined. For example, if a script containing

the line document.write(“</script>”) were fetched, escaping would be needed to avoid

having the string be interpreted by the HTML parser as a script tag. Because of this limi-

tation, we currently under report the potential effect of JavaScript throttling, particularly

for throttling advertising and marketing JavaScript, which is almost all non-local. We say

more about this missed opportunity in Section 2.6.

Once we have finished adding sleep invocations to a script, we run the modified script

through the TameJS compiler. TameJS transforms all of our uses of the sleep macro back

to standard JavaScript, but also includes a require call that brings in the TameJS library

code. We then replace this with the TameJS library code itself (252 lines of JavaScript),

resulting in a script that is as self-contained as the original script.

The transformed script is then inserted back into the body of the page and the proxy

continues on to the next script. If any error occurred in the compilation of the transformed

script, the original script is instead left on the page. Once all scripts had been processed,

the script prepends the initialization code, including the global declaration of the sleep

duration.
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Figure 2.2: Testbed as seen by user.

2.3 Testbed

To carry out the studies described in this chapter, we developed a simple testbed centered

around a Google Galaxy Nexus Android phone. The purpose of the testbed is to enable

instantaneous power measurement of the phone while allowing the phone to be used

either directly by a user or in an automated fashion, following a script. The phone is used

on battery power in all cases. The phone is configured to use the JSSlow proxy, which is

also part of the testbed. Figure 2.2 shows the appearance of the part of the testbed seen

by the user. The box under the phone is a current clamp. The phone uses a WiFi for

connectivity, attaching to an access point under our direct control.
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Power measurement

Instantaneous power is measured by connecting a conductor directly from the positive

terminal of the battery to the positive terminal on the phone, with an insulator directly

between the two ends of the conductor, creating a loop external to the phone that current

can run through. In order to allow the battery to still fit into the phone (allowing easy

connections between the other 3 terminals) a thin conductor was needed. We use layers

of metal foil as the conductor.

With the external loop directly accessible, we are able to use a current clamp to mea-

sure the current flowing out of the battery. Since this method uses an indirect method of

measuring current flow, it has a very low impact on the current itself, which results in

accurate readings with little perturbation.

The current clamp we use is a FLUKE i30, which has a maximum current of 20A RMS,

and an output of 100 mV
A . The device has an accuracy of±1% at±2mA and a resolution of

±1mA. The output of the current clamp is fed into a RadioShack 22-812 digital multimeter

(DMM), which provides access to readings via an RS232 serial port. This port is wired via

a RS232 to USB converter to a monitoring PC. We record DMM readings with QtDMM,

software designed for communication with various DMMs. Readings are taken at 10 Hz.

It is important to note that the combination of the phone, current loop, current clamp,

etc, remains hand-portable—the user can still hand-hold the phone.

In order to arrive at power, we must multiply the current read from the current clamp

by the voltage of the battery. The battery Voltage is subject to some noise, but is relatively

stable at 3.8V. This gives us a conversion from voltage read by the current clamp to power



48

of

W = Vclamp ×
A

100mV
× 1000mV

V
× 3.8V

WebProxyAutomator

Our testbed can be used non-interactively, since it had the ability to both visit and mea-

sure the power of a list of sites with and without the proxy enabled. To facilitate such

studies, and other non-interactive experimentation, we created an automated testing ap-

plication, WebProxyAutomator (WPA) for use with the Google Android operating sys-

tem. WPA creates a WebView [51], which is an instance of the built in Android web browser,

and then makes successive calls to load a new page from the list at selected intervals, tar-

rying at each page for a user-selected visit time.

2.4 Opportunity

To evaluate the potential power savings that are available through JavaScript throttling,

we used the testbed to study a range of sites without considering user interaction. This

work included a study of the effect on buggy JavaScript and advertising, and a study of

the effect on the top 120 most visited web sites.

Buggy JavaScript and advertising

The effects of JavaScript throttling on power are most extreme in cases where the Java-

Script in question is buggy, typically resulting in an event handler being especially long,

or going into an infinite loop. To evaluate this, we crafted an intentionally buggy test site

with the following JavaScript,



49

Scenario Proxy On [W] Proxy Off [W] Diff [%]
Bugs 1.599 3.325 -52%
Ads 1.332 1.472 -10%

Figure 2.3: Power reduction for infinite loop bugs and advertising. Average power over
10 s.

var i = 1; while(1) { i *= -1; }

which is run before any text is displayed on the page. The result is that the browser

becomes unresponsive and the text never appears. When viewing the same page through

JSSlow, however, the text immediately renders, the browser is responsive, and the power

consumption was less than half that of the untransformed site. This represents the upper

bound of power savings that are possible with JavaScript throttling as implemented in

JSSlow. This result can be seen in the first row of Figure 2.3. The power is reduced by

52%, which bounds the opportunity for JavaScript throttling.

Advertising makes extensive use of JavaScript, and because ad code is essentially

throw-away code, it is more likely to have bugs. To evaluate the effect of JSSlow JavaScript

throttling on advertisements, we manually extracted 50 ads from visits to a random sub-

set of 10 sites from the Google’s top-1000 sites (more details on this list in Section 2.4) and

ran them through JSSlow, the results of which can be seen in the second row of Figure 2.3.

Top 120 most visited sites

To evaluate the effects of JSSlow-based JavaScript throttling in a real world environment,

but without user interaction, we used the WebProxyAutomator (WPA, described in Sec-

tion 2.3) to programmatically load popular web sites with and without JSSlow enabled

and measured the difference in power. The specific set of sites we we loaded were se-
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Figure 2.4: Example power signatures with and without JSSlow.

lected from the Google AdPlanner list of the top 1000 sites2. Because we ran the phone

on battery power, we were only able to visit the top 120 sites before battery depletion.

Each site was visited an average of four times with the proxy on, and four times with

the proxy off. A visit included a load and dwell time of 10 seconds, that is, from the

time the site started loading to when we advanced to the next site was 10 seconds. The

suite of tests was covered in about 2.7 hours, at which point the battery was depleted.

During the load and dwell time, the testbed measured the power at 10 Hz. Thus, for one

visit, we have 100 measurements. We refer to this as a power signature. We can compare

power signatures with and without JSSlow, with an example shown in Figure 2.4, but we

generally compare averages over the duration of the power signature.

It is important to point out that this automated testing involved no interaction with
2https://www.google.com/adplanner/static/top1000/

https://www.google.com/adplanner/static/top1000/
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Figure 2.5: Distribution of absolute power difference between JSSlow-throttled sites and
native sites. Average power over 10 s.

the contents of the page, thus removing the possibility of running JavaScript from user-

interaction driven events such as onClick()

Across our sample set, we found an average power reduction of 6% when using JSS-

low. However, there is considerable variation across sites. Figure 2.5 shows the distri-

bution of the difference between the throttled and non-throttled runs for the set, while

Figure 2.6 plots the absolute power measured for the paired runs. We note that even

though there is an overall power savings, there are sites for which we actually increase

power. It is important to point out that JSSlow can be disabled in these cases, simply by

setting the g_slow parameter to zero.

It is important to note that the power savings also include the additional power used to

fetch the larger content in the case of the JSSlow transforms being active. For each script,

the JSSlow transformation expands the script’s size by a factor of two, and adds about
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Figure 2.6: Comparison of absolute power with and without the use of JSSlow. Average
power over 10 s.

252 lines of library code. In other words, a script of n lines expands to one of 2× n + 252

lines. These results in more energy spent in receiving the script.

As described in Section 2.2, JSSlow does not currently throttle non-local scripts, such

as ads. Given that we found that explicitly handling ads lead to power reductions of 10%

(Section 2.4), it seems probable that further power reductions will be possible for the top-

120 sites once this functionality is complete. Given these results, we believe the baseline

average power reduction due to simple inclusion of a JavaScript throttle with a default

setting, ignoring interaction, is 6–10%.
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Users

Age
17-25 15
25-35 4
35-45 1

Gender
Male 13

Female 7

Area of Study

Computer Science 10
Science / Engineering 3

Liberal Arts 2
Other 5

Length of smartphone usage

Never 1
0-1 Months 2

6 Months - 1 Year 4
1-2 Years 5
2+ Years 8

Smartphone Type Owned

None 1
Android 9

Blackberry 2
iOS 7

Other 1

Figure 2.7: User study demographics.

2.5 User study

JSSlow aims to reduce the power consumption of JavaScript interpretation by slowing it

down, which could potentially have an inverse impact on user satisfaction with the web

sites running those scripts. We designed and ran a user study that would evaluate the

effect of JSSlow throttling on both user-perceived satisfaction, as well as measuring the

change in power consumption during real-world usage.

Subjects

Our IRB approval3 allowed us to advertise our study at various locations throughout

the Northwestern University campus. We selected the first 20 students who replied to
3Northwestern IRB Project Number STU00002997.
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participate in the study. Demographics of this population are presented in Figure 2.7.

The study was designed to take one hour, each user was compensated for their time with

a $20 gift certificate.

Tasks

The purpose of each task was to approximate the normal usage of a mobile device by a

user, as well as to provide various scenarios for which JSSlow might have an effect. The

tasks were split broadly among 2 categories: low interactivity tasks, and high interactivity

tasks. What we are trying to capture with these categories is the level of interaction the

user will have with JavaScript. The sorts of interaction in low interactivity sites are gener-

ally restricted to tasks of the form of leaving a comment, or navigating to a certain part of

a site, if the navigation is implemented in JavaScript. High interactivity tasks are ones in

which the user is constantly interacting with the script in some way, such as with controls

in a game.

CNN and Facebook were selected as low interactivity tasks that are representative

of common sites that users visit on their mobile devices. CNN stands in for news and

blog-type sites, while Facebook is the exemplar of a social network site.

High interactivity tasks were harder to find, as JavaScript is still relatively new to

interactive applications, and browsers do not necessarily implement the same subsets

of JavaScript technologies, or with similar performance (Internet Explorer, for example,

does not perform well on WebGL benchmarks). Additionally, there are relatively few

JavaScript applications that are written to be used with a mobile interface. For these

reasons, we chose a very simple application for users—a game of “Snake” written in
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HTML5 4. The game is controlled by a user swiping the screen in the direction they want

the snake to move, with the stipulation that the snake can only ever make 90◦ turns.

Methodology

We designed an double-blind intervention study in which the subject would either have

their code slowed down through the proxy or not, but not be made directly aware of

which state they were in. Additionally, the proctor administering the exam would not

be aware of the current state either, but only collect information regarding the subject’s

current satisfaction.

The device that the subject was given to use during the study is the same one described

in Section 2.3. We now consider the flow of the study from the perspective of the subject

and the perspective of the proctor.

Subject

When a subject first arrived, we had them fill out a questionnaire designed to determine

their level of knowledge and comfort with a modern mobile device. For the duration

of the study, the subject only interacted with web sites in the device’s browser, which

minimized the amount of experience and knowledge needed of the Android platform.

The user was then given 5–10 minutes to browse to any site. The purpose was to get

them familiar with the device, as well as to the normal speeds of the network and browser.

The device was connected to the proxy for the entire duration of the study, throttling

was turned off during each familiarization phase. Once the user finished familiarizing
4snake.alexthorpe.com

snake.alexthorpe.com
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(a) CNN

(b) FaceBook

(c) Game

Figure 2.8: Absolute difference in power versus absolute difference in reported satisfac-
tion. Averaged over task intervals. The star represents power difference without interac-
tivity.
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themselves with the device, they were prompted to give his current satisfaction with the

performance of the device, in order to establish a baseline for that subject.

At this point the device would be pointed to a landing page, which included links to

each page the user would visit over the course of the study. For both of the low interac-

tivity sites, a dummy account was already logged in, so as not to require the user logging

into a personal account, eliminating any privacy concerns.

For CNN and Facebook, the user would visit an article or page, respectively, read

through the content, and then post a short comment. During the course of this process,

the user would be periodically prompted to indicate their level of satisfaction with the

site. They were asked to verbally express their satisfaction on a Likert scale of 1–10, where

1 represented complete dissatisfaction, and 10 represented complete satisfaction.

Once finished with the low interactivity tasks, the user would be pointed to the high

interactivity task, and given 5–10 minutes to familiarize themselves with the speed and

reactivity of the game. During this time, the proxy was again off. Once this time was up,

the user would play the game for two 5-minute sessions. As in the previous phase, the

user was periodically prompted to verbally provide his current level of satisfaction.

When both sessions had been completed, the user was asked to fill out an exit ques-

tionnaire, indicting his overall satisfaction with the performance of the device for the

entire study. They were also asked to note any times during which they noticed changes

in performance.

Proctor and proxy

The study was designed to be double blind—neither the user nor the proctor were aware

of the state of the proxy. The proxy had a user-study mode that would expose certain
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controls to the proctor, allowing it to transition to the appropriate state for each phase of

the study. During each interactive phase, the proctor would prompt the user to verbally

indicate their satisfaction every 30 seconds, and note this figure down.

The proxy would start in a non-throttling state, so as to allow the user to get accus-

tomed to the baseline behavior during the initial familiarization phase. Once this was

done, the proctor would send a signal to the proxy, making it transition to the low in-

teractivity state. During this state, the proxy would randomly choose whether or not to

throttle each site that was loaded. The proctor would send signals to the proxy for when

the user started each site, allowing careful time stamps to be kept. At the end of this

phase, the proctor would send the proxy another signal, putting it back into the familiar-

ization state.

For the first game session the proxy would randomly choose whether or not it would

throttle JavaScript, and it would then choose the opposite of that choice for the second

run.

During the entire study, the instantaneous power draw was being both measured and

recorded. This information, combined with the time-stamped logs and satisfaction results

allowed us to extract the average satisfaction for each site in each task, the average power

used during the time spent on that site, and whether or not the site had been throttled.

Results

We conducted our study over a total of 20 subjects, and were able to get satisfaction results

from 19 subjects, as well as power readings for 15 subjects. We report on these 15 in the

following. To account for any anchoring effect due to the user-based interpretation of

satisfaction, we did our analysis based on the differences in satisfaction, paired by user.



59

Average Difference Off-On Average
Task Avg StDev Conf On Off

CNN 0.29 0.39 0.12 7.84 7.54
FB -0.11 0.34 0.11 7.18 7.29

Game -0.26 1.24 0.39 5.39 5.65

Figure 2.9: Average absolute difference in satisfaction levels with proxy on or off, and
average absolute satisfaction levels with proxy on or off.

Average Difference Off-On [W] Average [W]
Task Avg StDev Conf On Off

CNN -0.12 0.22 0.06 2.08 2.20
FB -0.05 0.08 0.03 1.88 1.92

Game 0.013 0.10 0.036 2.26 2.25

Figure 2.10: Average absolute difference in power (over task interval) with proxy on or
off, and average absolute power levels with proxy on or off.

We looked at the values of the absolute differences, as well as the relative differences.

The results of the study are presented in Figures 2.8 through 2.12. Figure 2.8 plots the

differences in power versus the differences in satisfaction for each user between slowed

down and normal script execution. The figure is split into 3 plots, showing the results for

each task. We also show the average power savings in the case of no user input, indicated

with a black star.

The tables in Figure 2.9 and Figure 2.10 present the findings in absolute difference.

For each task, the satisfaction ratings and power usage for slowed down and normal site

performance are compared for that user, and then averaged across all users. We also

calculate the standard deviation, and 95% confidence interval for the average value that

we found. The last two columns show the average value of satisfaction with the proxy

slowing down JavaScript execution across all users, and the average value of satisfaction

with JavaScript running normally.

The tables in Figure 2.11 and Figure 2.12 present the same data set, but consider the
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Task Avg [%] StDev Conf
CNN 4.24 5.24 1.67

FB -1.10 5.55 1.81
Game -0.18 33.10 10.52

Figure 2.11: Relative difference in satisfaction.

Task Avg [%] StDev Conf
CNN -5.24 10.00 2.92

FB -2.38 3.61 1.05
Game 0.85 4.55 1.33

Figure 2.12: Relative difference in power.

percentage difference in satisfaction and power usage, rather then the absolute difference.

For these values standard deviation, and 95% confidence interval are also calculated.

Analysis

We consider the data from our study using our two broad categories: low-interactivity

and high-interactivity tasks. We consider the data from these categories separately since

users may have different expectations for how fast each operates. We are testing whether

we can proceed power and energy reduction during interactive use, without effecting the

satisfaction of the user.

Figure 2.9 is telling us that there is little change in user satisfaction when the proxy is

applied in the low interactivity tasks. The confidence intervals suggest that for the Face-

book score the detected difference is not meaningful, while for CNN, the detected differ-

ence is statistically significant but very small. On the other hand, for the high interactivity

task, we see large variation, but with both increased and decreased satisfaction, suggest-

ing that response to performance in high interactivity cases is highly user-dependent.

While not statistically significant, the difference between the proxy on and off is quite
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small. Figure 2.11 tells much the same story. If we average all low interactivity results

together, we get a change in satisfaction of 1.6% between the proxy being on versus it

being off.

Figure 2.10 shows statistically significant power savings for the low interactivity tasks.

Figure 2.12 presents the relative differences. Average all of the low interactivity measure-

ments, we get average power saving of 3.8%. This number is worth comparing with the

top-120 study (Section 2.4 where we found a 6% savings, without any user interaction.

For the high interactivity task we find a small increase in power consumption, al-

though it does not rise to statistical significance. Nonetheless, this might seem impossible

and contradictory with our automated testing-based finds, but we now consider an ex-

planation.

Impact of the interactive governor

The phone that we used was running Android OS version 4.0.4, which uses the Linux “in-

teractive” CPU frequency governor, whose goal is to provide as smooth a user interface as

possible. The governor accomplishes this by ramping up the processor to the maximum

power state on any human input, and then evaluates past load to slowly scale down

power state [131]. The assumption is that once user interaction has been initiated, more

user interaction is likely to happen, and the system should be able to process / respond

to that interaction as quickly as possible.

Figure 2.13 shows the instantaneous power draw on the battery in 3 scenarios: (1) a

site is loaded by the browser, rendered, and allowed to run for 30 seconds, (2) the same

site is loaded and rendered by the browser, but after 25 seconds a user begins typing

a comment, and (3) the same site is loaded and rendered by the browser, but after 20
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Figure 2.13: Power signature with and without user interaction. “Clean” indicates the
site without any user interaction. “Typing” and “Swiping” indicate these activities are
occurring.

seconds the user inputs random swipes (continuous contact with the screen). We can see

that the power draw during user interaction is on the order of that of the initial page fetch

and load in the case of typing, and about half of that in the case of random swipes.

Because of the interactive governor, there will be increased power usage during any

time a user is interacting with the device. We claim that the more frustrated a user be-

came with the decreased responsiveness of the game application, the more often they

would press the screen, trying to correct errors that had been committed during game-

play because the interface had applied their previous action too late. This effect will also

be noticeable in any situation where a user has to scroll through a page often, or has to

follow multiple links to get to the content they are looking for.

Power versus satisfaction

In Figure 2.8 we compare the change in satisfaction to the change in power draw for each

user, and plot them for each task. We have included dotted lines that separate the space
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into 4 quadrants. If an increase in power savings came directly at the cost of satisfac-

tion (and vice versa) we would expect clustering of points in the upper-right lower-left

quadrants, as a positive difference in satisfaction is good, and a positive change in power

usage is bad. These plots include data from all users, places where no data was collected

is represented with a difference of 0.

In the CNN results, most of the points are clustered in the lower-right hand of the plot,

with a few outliers. This is interesting, in that there were very few users who reported

lower satisfaction with slowed down execution. In the Facebook plot, we see a similar

distribution of power difference, though at a smaller scale. In this task however, there

was much more variance in the change in satisfaction, users reported both positive and

negative changes in performance.

This could be partly attributable to the fact that the user had to click through more

links to get to the full text of the article. Users were told not to let load time influence their

ratings of satisfaction, but they could have taken that factor into consideration anyways.

The plot for the game task has results scattered throughout each quadrant, suggesting

that each user’s perception of performance is highly varied, and argues for allowing the

user to control whether or not a slowdown is applied.

2.6 Limitations of JSSlow

We now consider some of the limitations of our specific implementation of a JavaScript

throttle. The JSSlow proxy is a proof of concept, showing that it is possible to slow down

execution with no client or server changes, but, as we show in Section 2.7, there may be

other, finer grain ways of implementing a throttle that avoid JSSlow’s implementation
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issues.

Continuation passing style

JSSlow’s use of CPS to simulate sleep calls introduces limitations related to memory use

and performance.

Stack space

Consider a loop. By transforming the loop body to use continuations, we are basically

transforming the loop into a recursion. In the worst case, we then would need to allocate

additional stack space for each iteration or block of iterations of a loop, as it is a function

call. The TameJS compiler tries to limit stack use via tail call optimization, and, strictly

speaking, since the original code is a loop, it must be possible to do this optimization.

However, the actual optimizer is unable to detect this situation in some cases. In such

cases, the runtime stack grows with number of loop iterations resulting in large memory

use, and, of course, the script fails if the stack gets too large.

As an example, using the V8 engine included in Node.js, with a 4 KB runtime stack,

and a for loop with no additional allocation that TameJS was unable to tail call optimize,

the transformed script ran out of memory between 13,000 and 14,000 iterations.

Running out of stack space is not an inherent issue with JSSlow’s approach, but is a

consequence of unrecognized tail call recursion optimization opportunities.

Performance

Another consequence of the JSSlow approach of slicing up program execution via contin-

uations is that there is overhead associated with continuation creation and use. To mea-
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sure this overhead, we compared normal and transformed versions of a for and while

loop. The body of each loop was a non-blocking arithmetic operation, with no allocation.

In the transformed version, each loop iteration became a continuation, but there was no

sleep used during the continuation. We ran 13,000 iterations of the for loop (where tail

call optimization was not performed) and 100,000 iterations of the while loop (where it

was). For each, we measured the time it took for the loop to complete in the base and

transformed code. All code was run on the V8 JavaScript engine included in Node.js us-

ing a stack size of 4 KB. The transformed for loop run times increased by an average of

2.1%, the transformed while loop run times increased by an average of 1.6%.

Increased content size

Since JSSlow must not only inject additional “sleep” calls into intercepted code, but also

transform the resulting code into code runnable by any JavaScript engine, we are increas-

ing the size of the content being delivered to the mobile device. Given that wireless re-

ception of data also affects battery usage, we must be careful to take this into account, as

it will have an effect on our energy savings. Our results do this, as we capture the average

power over both the fetch and the dwell time. If throttling were implemented internally

in the JavaScript interpreter in the client, however, the additional energy cost due to the

increased content size could be avoided.

Energy increases

Our results from the top-120 sites (Section 2.4) indicate that we save energy on most sites

by using JSSlow. However, a small fraction of sites actually have increased energy use.

Ideally, a tool like JSSlow would be able to deactivate itself for such sites. While we can set
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the g_slow throttle in the JSSlow-transformed code, even when set at zero, the energy costs

due to the increased content size and the overhead of continuation-passing execution

remain. If throttling were implemented internally in the JavaScript interpreter, however,

these cost could be avoided. The interpreter could also adaptively set the equivalent of

g_slow, testing if a non-zero level actually results in decreased power.

Missed opportunities in advertising

JSSlow currently inlines scripts, but we have difficulty inlining scripts that come from

non-local sites. We therefore have disabled this functionality in most of our studies. How-

ever, advertising JavaScript is almost always of this non-local form, and, as we showed in

Section 2.4, it is particularly amenable to energy reduction by our transformations. The

consequence is that we were unable to apply the JSSlow throttle to most advertising, and

thus miss this further opportunity to decrease energy use, and possibly increase satisfac-

tion, for typical sites.

Course-grain operation

The JSSlow throttle consists of the locations of the injected sleep invocations, and the

duration of the sleep intervals. Even with a very small sleep interval, this can have a

quite course-grain effect on the performance/power tradeoff. If we inject the sleep macro

in every loop iteration, we have the potential of invoking the kernel sleep system call

once per iteration. This would slow the loop to one over the minimum sleep interval

the kernel provides. In the case of a typical desktop Linux kernel, configured with a 1

ms periodic timer, this would potentially decrease the loop iteration loop to as little as

1 KHz. Having finer grain control over when and how often the JavaScript interpreter
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thread yields would allow for a more gradual tradeoff between performance and power.

2.7 Recommendations

Despite its limitations, the JSSlow implementation of the JavaScript throttle, and the re-

sults we have derived from using it, are, we believe, sufficient for us to make a set of

recommendations about the possible mechanisms and policies of JavaScript throttling.

Deploy JavaScript throttling

JSSlow and the results we have developed using it show that it is feasible to reduce power

and energy on mobile devices via JavaScript throttling with little effect on user satisfac-

tion. Arguably, the limitations of JSSlow’s implementation of throttling actually under-

state the case.

JavaScript throttling could potentially be deployed in an incremental way, using a

proxy approach, like JSSlow’s, to provide throttling for existing, unmodified client soft-

ware talking to existing, unmodified sites. Over time, more sophisticated forms of throt-

tling could be rolled out.

Throttle the engine

The limitations of JSSlow, described in Section 2.6 could be avoided if the throttle mech-

anism were embedded into the JavaScript interpreter, or engine, itself. The interpreter

main loop could simply decide on whether to yield or sleep on each iteration. This would

provide a very fine grain throttle while not changing any JavaScript syntax or semantics.

Furthermore, since the throttle would be part of the browser implementation, instead of
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embedded into the JavaScript code itself, as in JSSlow, there would be no code expansion

limitation nor any continuation passing overhead.

We examined two JavaScript engines, V8 and SpiderMonkey, with the goal of evaluat-

ing the challenges of such an implementation. In both cases, we were readily able to find

good points at which to add throttling.

In the V8 codebase, we added a sleep call to the Invoke function, located in the file

execution.cc. The Invoke function marks a point of entry for execution of code in the V8

virtual machine. Through the use of selective invocation of a nanosleep() system call

with different parameters, we are able to slow down JavaScript execution with arbitrary

precision.

In the SpiderMonkey codebase, we identified the DO_NEXT_OP macro, located in the

filed jsinterp.cpp, as a location to implement a throttle. DO_NEXT_OP is the step in the Spi-

derMonkey state machine during which the next script opcode is fetched and processed.

To control this mechanism, we could provide programmer-driven policy or a user-

driven policy, both of which we describe next.

Expose the throttle to the programmer

Given a throttle built into a JavaScript engine, as described in the previous section, a natu-

ral question is what policy should control this mechanism. It is tempting to simply expose

the sleep functionality directly to the developer, but this might conflict with JavaScript’s

event-driven model, and would probably require the introduction of threading to be ef-

fective. Calling sleep in part of the code should not put the entire document to sleep.

For example, we would not want to stop user elements from rendering while we wait for

non-essential code to run again.
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One alternative that we believe would be fruitful is to directly expose the control pa-

rameter that the engine is using internally to decide when to sleep and for how long.

However, this would have the disadvantage of breaking the abstraction between the

JavaScript code and any given interpreter—we would like the programmer to be able

to adjust the throttle of any interpreter.

Another alternative, which would maintain this abstraction, would be to codify a set of

API functions that can be provided by any interpreter, functions that provide for relative

throttle changes, and extremes, such as: throttle_up(), throttle_down(), throttle_max(),

and throttle_min(). Extending control through an API such as this would allow the

application developer to provide input into the throttle-setting process in an engine-

independent way, while leaving ultimate control to the engine developer. This approach

also has the advantage of not requiring any change to the standard JavaScript execution

model.

Expose the throttle to the user

In the user study that we conducted, throttling applied to the high interactivity task re-

sulted in a high variance of changes in satisfaction. Considering that each user likely has

both a distinct perception of performance change, as well as a different expectation of

application performance, this makes sense, and argues for exposing a level of control to

the user. In fact, in later chapters we develop interfaces wherein users are allowed to set

their own delays and we see a high variance of settings.

In this model, throttling would be turned on by default and set to an initial value that

would either be determined by the engine developer, the application developer, or the

mechanism we describe in the next section. The user would be presented with a method
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to change the throttle setting, or turn off throttling altogether, perhaps in the form of

a visible button or toggle, or via a physical button, or via a special swipe pattern, or

biometrics, or perhaps even via a maneuver that is detectable using an accelerometer.

In subsequent studies we give users the ability to control their delay using the volume

keys on their smartphone. In real world conditions, we could not simply highjack such

necessary keys, but it would not be difficult to imagine adding similar functionality, for

example using NFC buttons attached to the phone such as those from DIMPLE.IO [33].

The change in throttle level from the default would be stored locally, so that the user

would not have to change this every time they revisited the application. Previous work

(e.g. [117, 81, 118, 85, 84]) has shown that by allowing users to set their own level of

performance leads to power reductions as well as more satisfied users, and that users are

often quite capable of setting such throttles.

Socialize the default throttle setting

A shared problem with any policy for setting the throttle is how to determine the default

setting, which will represent a good tradeoff of satisfaction and energy savings. Users

or applications could then modify this setting as needed. One approach might be, for

each site, to select a response latency bound for controls (e.g., 15 ms as in [23]), and then

select a throttle setting that just barely achieves this. The approach we prefer would be

to have the JavaScript engines report user settings per site to a common service. This

service would integrate the settings to determine average or median settings for a site

that it would then convey to users visiting the site for the first time.
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2.8 Conclusion

We investigated the claim that throttling the execution rate of client-side JavaScript can

lead to lower power and energy on mobile devices without a significant decrease in user

satisfaction with the the sites that employ the JavaScript code. We have generally found

this to be the case, particularly for lower-interactivity sites. Our studies were done with

an implementation of throttling that is based around JavaScript transformation in a web

proxy. While this has the advantage of working with any client or site, its limitations

may also understate the case. Nonetheless, it appears that even a simple throttle imple-

mented in this way, with a default, unalterable setting, is able to reduce average energy

over a range of sites by 4–10%, with lower interactivity leading to more savings. These

results recommend the deployment of JavaScript throttling, and we provided a range of

recommendations on how to do so.

The results we obtained in the work show in this chapter further support our claims

that there exists a variance of delay tolerance satisfaction amongst users, and show that

through the introduction of delays on client devices, energy savings can be achieved. The

work also shows that delay tolerant varies across application, meaning that there exist

classes of applications which could be heavily delayed, without annoying most users.

However, mobile web browsing is but a small part of the whole smartphone experi-

ence, and inserting delays into JavaScript misses on the opportunity that exists in native

smartphone applications. In the rest of my doctoral work, I focus mainly on native smart-

phone applications, and the new opportunities that inserting delays there opens up.
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Chapter 3

What is the tolerance users have for delay

in cloud-backed mobile applications?

In this chapter, I describe work that lays out the concept of a delay tolerance “envelope”,

and demonstrates, with an in-the-wild user study, that the envelope for users is much

larger than one might initially suspect, with an average of 750ms being acceptable based

on the study population. The results of this work have been accepted and will be pub-

lished in the MASCOTS conference in 2016.

Policies for scheduling, mapping, resource allocation/reservation, power manage-

ment, and similar mechanisms are generally designed with the assumption that the of-

fered workload itself is sacrosanct. Even for closed systems, we hope that the system

will have minimal effect on the offered workload. For the present chapter, we consider

three parts of this assumption: (1) the workload’s statistical properties are a given, (2) the

overall offered load is a given, and (3) the performance requirements are uniform across

users. The design of a policy typically is then focused on the goal of minimizing cost,

power, energy, latency, etc. given these.
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In this chapter, we consider the prospects for relaxing the assumption that incoming

workloads are immutable. Instead of studying how the cloud or datacenter might re-

spond better to a sacrosanct offered workload, we turn the problem around 180 degrees

and consider a model in which the backend determines its desired workload characteris-

tics and the frontend, or load balancer, enforces these characteristics. We think this can be

done by taking advantage of the variation in tolerance for a given level of performance

that exists among individual users. We have found that such variation exists in many

other contexts [54, 91, 125, 81, 94], and that its is possible to take advantage of it in those

contexts [85, 84, 86, 87, 90, 115, 138, 78, 81, 124, 123].

We leverage a toolchain that lets us interpose on existing popular Android applica-

tions taken directly from the Google Play store. Using this toolchain, we modify a set of

such applications so that their frontend/backend interaction passes through code that can

selectively delay the interaction. Our additions to the applications also include mecha-

nisms for user feedback about satisfaction with performance. This allowed us to conduct

a user study where we introduced varying amounts of delay into the applications’ fron-

tend/backend interactions, and collected user feedback about their satisfaction with this

added delay. A core outcome of the study is that it is possible to introduce up to 750ms of

delay without a change in user satisfaction (to within 10% with > 95% confidence) for our

test applications. We also observed that user satisfaction with specific amounts of delay

varied considerably.

The contributions of this chapter are:

• We show, via a user study involving 30 users running 5 popular Android applica-

tions on their mobile phones over a period of a week, that there is more tolerance

for delay among users than generally believed. The tolerance for introduced delay
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exists across the whole subject group, and it varies across individuals.

3.1 Frontend augmentation

Our user study is based on popular Android Java applications that are available only in

object code form, from the Google Play store. We modify these application frontends to

add the following functionality, all within the mobile phone.

1. The ability to introduce delays to the frontend’s network requests. Delays are selec-

tively introduced according to test cases loaded onto the phone.

2. Continuous measurement of the phone’s environment. This includes CPU load,

network characterization (RSSI), which radio is in use, and others.

3. An interface by which the user can supply feedback about performance. A user can

do so at any time, but can also be prompted to do so by a test case.

The specific choice of applications, test cases, arrival process for test cases, and users is

the basis of our study.

The application augmentation framework we use for this study is based on Dpart-

ner [139] and DelayDroid [64]. Dpartner is a general framework for decomposing a com-

piled Java application into its constituent parts, adding interposition, instrumentation,

and other elements, repartitioning the elements differently (for example, across the clien-

t/server boundary), and then reassembling the applications. It is intended to support

various kinds of experimentation with existing, binary-only, distributed applications.

DelayDroid leverages Dpartner to augment mobile Android applications. We use De-

layDroid to add delaying capabilities in applications. DelayDroid effectively introduces
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Figure 3.1: Run-time architecture on the frontend.

a proxy into an application through which both high-level (e.g. HTTPWebkit) and low-

level (e.g. TCPSocket) network requests are passed. The framework interposes a delaying

proxy on 110 networking-related functions from within 5 broad categories of the Android

API: HTTPWebkit, HTTPApache, HTTPJaveNet, TCPSocket, and UDPSocket. This allows

us to interpose on any network request, irrespective of the method the original app de-

veloper chose for their network communications. The proxy can delay requests through

any of these interfaces, and is controllable via the test case. In the case of a 0 delay test

case, the overhead of the proxy is negligible. The application binary produced as a result

of DelayDroid interposition is only about 1-2% larger than the original binary.

In addition to the augmented application, our framework introduces a separate com-

ponent, the Feedback Collector (FBCollector) that is responsible for coordinating aug-

mented applications on the phone, and collecting user feedback.

Figure 3.1 illustrates the run-time architecture of our system when deployed in a user

study. The phone contains multiple augmented applications. For each augmented ap-

plication, our framework has modified or introduced four kinds of classes: refactored

network-relevant classes which we interpose on to send network requests, refactored

context-relevant classes which we interpose on to track context, DelayDroid run-time
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classes which we add in order to inject delay, and unchanged classes.

The DelayDroid run-time consists of 3 components: ContextService, DelayController

and Rate-Message Receiver. The ContextService collects and provides information about

the context, such as the network status. The DelayController is in charge of injecting

delays into the network requests. The DelayController chooses test cases randomly from

within a predefined set. Operationally, when any network request occurs, control flow

is detoured through the DelayController. The DelayController then delays the request

according to the test case. The Rate-Message Receiver interacts with FBCollector, and its

operation is explained below.

The FBCollector is a separate application that coordinates with augmented applica-

tions by sending and receiving Android broadcast messages. This is also the user-visible

portion of the system. A Likert scale overlay of 1-5 hovers over the application, shown in

Figure 3.2. The user can select a rating (i.e. rate their satisfaction) at any time. A rating

of 1 indicates complete dissatisfaction with performance, and 5 indicates complete sat-

isfaction with it. In addition to unprompted feedback, the user interface also supports

prompted feedback, through the form of making the overlay blink a red border.

During the user study, test cases are started at random times by the DelayController.

For any test case, a delay is randomly chosen and applied to all instrumented network

requests sent over the duration of that test case. Once the test case finishes, the DelayCon-

troller will send a message to the FBCollector 1©, where it is received by the Blink Message

Receiver 2©, causing the overlay to blink, prompting the user 3©. When a user provides

feedback via the overlay, the FBCollector notifies 4© the Rate Message Receiver 5© com-

ponent, which in turn logs the feedback and all relevant contextual information.

The log files produced by the system include a timestamp, satisfaction rating, if the
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Figure 3.2: Rating overlay in its active state, as hovering over Pinterest.
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App Req. Rate [req/s] Computation
MapQuest 0.89 Low

Pandora 0.38 Low
Pinterest 1.63 Medium

WeatherBug 1.09 Low
Google Translate 0.46 High

Figure 3.3: Applications in our study.

rating was prompted, current test case, arrival time and duration of the request, running

application, OS metrics (such as CPU load), and network metrics (WiFi or cellular, packet

drops).

3.2 User study

The goal of our user study is to understand how changing performance via delaying

the network requests flowing from the frontend to the backend affects user satisfaction.

Simply put, how much delay can we introduce before ordinary users employing popular

applications become dissatisfied? To answer this and related questions, we leveraged the

framework of Section 3.1 to augment popular applications. We then designed a study in

which existing users of these applications could participate on their own phones in their

normal environments.

Applications

We chose five of the most popular applications from the Google Play Store, applications

where we believed we would have no trouble recruiting existing users. We also wanted

to test applications that had varying request rates as well as varying amounts of “compu-

tation” that would likely be done on the datacenter. For the study, we chose MapQuest,
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Pandora, Pinterest, WeatherBug, and Google Translate as a representative sample of pop-

ular applications.

Subjects

Our study was IRB approved1, which allowed us to recruit participants from the broad

Northwestern University community. We advertised our study by poster at several loca-

tions on campus, and also advertised by email. Our selection criteria was that the subject

had to own and regularly use a mobile phone capable of running our augmented ap-

plications, and the subject had to self-identify as a regular user of at least one of our

applications. We selected the first 30 respondents who met these criteria for our study. As

part of the study, each subject also filled out a questionnaire about their familiarity with

phones, applications, etc. Each was given a $40 gift certificate at the end of the study.

Our 30 subjects have the following demographics, and the phones that they used are

enumerated in Figure 3.4.

• 12 females, 18 males.

• 25 were age 17–25, 5 were age 25–35.

• 16 were in the engineering school, 10 were in the liberal arts school, 3 were in the

journalism school, and one was in the education school.

• 25 had used a modern smartphone for at least 6 months, with 21 of these having

used one for 2 or more years.

• MapQuest: 7 indicated a familiarity of 7 or greater (on a scale from 1 to 10).
1Northwestern IRB Project Number STU00093881.
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• Pandora: 23 indicated a familiarity of 7 or greater.

• Pinterest: 11 indicated a familiarity of 7 or greater.

• WeatherBug: 8 indicated a familiarity of 7 or greater.

• Google Translate: 17 indicated a familiarity of 7 or greater.

Test Cases

We designed test cases, randomly selected periods of randomly selected additional delay,

with an eye to inducing perceptibly different levels of performance in our applications as

we ourselves perceived them. In a test case, each network request that occurs during a

test case is delayed by a fixed amount. Our test cases all had a duration of one minute,

and their delays were 0, 50, 250, 500, and 750 ms. Users were prompted for feedback in

the middle of the test case (30 seconds in). Test cases themselves arrived randomly, with

a user prompted an average of 152 times over the course of the study (one week). About

20% of prompts resulted in a response.

The only indication the subject had that a test case was running was being prompted,

but the subject was also so prompted during the zero delay test case.

Methodology

The subject used his or her own personal smartphone for the duration of the study, albeit

with our augmented test applications replacing the original applications. All logs were

kept on the subject’s smartphone, and were removed at the conclusion of the study, along

with the augmented applications. The duration of the study was one week.
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Model Android version
Moto X 4.4.2
LG D500 4.1.2
Samsung Galaxy S3 4.3
Motorola Photon 4.0.2
Nexus 5 4.4.2
Samsung Galaxy S2 2.4.6
Samsung Galaxy S4 4.4.2
HTC One M7 4.4.2
Samsung Galaxy S4 4.4.2
Nexus 5 4.4.3
Samsung Galaxy S4 Mini 4.2.2
Samsung Galaxy S4 4.2.1
Samsung Galaxy S4 4.2.1
Samsung Galaxy S3 Mini 4.1.1
Samsung Galaxy S4 4.2.1
Nexus 4 4.2
Samsung Galaxy S2 2.3.6
Samsung Galaxy S3 4.3
Sony Xperia MT27i 4.0.4
Samsung Galaxy S4 4.3
Samsung Galaxy S5 4.4.2
Samsung Galaxy S4 4.2
Motorola G 4.4
Samsung Galaxy S3 4.3
Samsung Galaxy Note 2 4.2.2
Samsung Galaxy S3 4.3
Samsung Galaxy S3 4.3
HTC Droid DNA 4.4.2
Galaxy Nexus 4.2.2
Nexus 5 4.4.3

Figure 3.4: Model and Android version of participant mobile devices. With the exception
of the 2 Samsung Galaxy S2 phones, all of the devices were considered modern phones at
the time of the study.
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When a subject first arrived, we had them fill out a questionnaire designed to de-

termine their level of knowledge and comfort with a modern mobile device, as well as

collecting demographic information. During this time we installed the augmented appli-

cations.

The subject was then instructed how to use the user interface for the duration of the

study. This was done with a written document that was identical for all subjects. The

document stressed that our interest was in the level of performance of the applications

and not in their content. It did not indicate to the subject how performance might change.

We indicated that it was important to provide feedback about performance whenever the

interface flashed, and we described the intent of the scale as “1 being completely dissat-

isfied, 5 being the most satisfied, and 3 being neutral [with/about performance]”. The

subject would then leave the lab, and use their phone as they normally would for one

week, answering rating prompts when appropriate.

At the conclusion of the week, the subject returned to the lab, and filled out an exit

questionnaire. As they filled this out, we connected to their smartphone, downloaded

the study data, and removed the test applications from their phone, replacing them with

the original applications. Other than our interaction with them, and the user interface,

changes to their normal experience of the applications was intentionally kept to a mini-

mum.

3.3 Study results

Our study produced ratings from 27, and network traces from 29 of the 30 subjects. Recall

from Section 3.1 that ratings could be provided as a result of a testcase prompt or inde-
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Average Average Change p-value for Comparison
Delay [ms] Satisfaction in Satisfaction to No Delay

No Delay 4.0773 0 n/a
50 4.1000 0.0227 0.002

250 4.1233 0.0460 0.001
500 3.9408 0.1725 0.022
750 4.1975 0.1202 0.005

Figure 3.5: User satisfaction is largely unaffected by the introduction of delays of up to
750 ms into network requests made from Pandora, Pinterest, WeatherBug, and Google
Translate. The p-values indicate that there was no statistically significant change in user
satisfaction as request delay was added. The threshold here is 0.5 (10% of the rating scale).

pendently. In the following, we consider only the prompted responses, which correspond

to test cases of any delay, including 0, on a scale of 1 to 5.

Given these constraints, our study produced 850 data points, each of which is the

outcome of an intervention (the application of a test case) that resulted in a prompted

response from the user. Given this number, as we decompose the results, for example

by application or user, it is important that we highlight which conclusions have strong

statistical support from the data. Hence, when we present p-values, we bold those that

have p < 0.05 (95% confidence level).

To account for any anchoring effect due to user-based interpretation of satisfaction, we

did our analysis based on the differences in satisfaction between delayed and undelayed

application ratings for each user individually. In this way the comparisons that we make

should be immune to differences in how users define their satisfaction levels.

Users tolerate significant added delay

If we look across all of our users and applications, we see the results of Figure 3.5. Here

we record the average satisfaction for each level of delay, the average change in satis-
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App 50ms 250ms 500ms 750ms
MapQuest 0.591 0.731 n/a 0.268

Pandora 0.133 0.127 0.034 0.291
Pinterest 0.131 0.025 0.101 0.356

WeatherBug 0.303 0.254 0.158 0.289
Translate 0.576 0.217 0.646 0.000

Figure 3.6: TOST apps, threshold = 0.5, p-values for testing that average satisfaction is no
different for the given delay value and a delay of zero. Bold values are < 0.05.

App 50ms 250ms 500ms 750ms
MapQuest 0.488 0.416 n/a 0.127

Pandora 0.000 0.004 0.000 0.002
Pinterest 0.011 0.000 0.003 0.034

WeatherBug 0.105 0.071 0.023 0.055
Translate 0.155 0.003 0.292 0.000

Figure 3.7: TOST apps, threshold = 1.0, p-values for testing that average satisfaction is no
different for the given delay value and a delay of zero. Bold values are < 0.05.

faction compared to that of the zero delay level, and a p-value. In aggregate, the data

points to the possibility of introducing up to 750 ms of additional delay without having

a significant effect on user satisfaction. The p-values reported are for a two one-sided t-

test (TOST) [109], which measures how easily we can discard the null hypothesis that the

mean satisfaction at a given delay level is different from the mean satisfaction at a delay

of zero. In all cases, we can discard this hypothesis with at least 97% confidence. In such

comparisons, the threshold of difference is also important to consider. The results in the

figure are for a threshold of 0.5, or 10% of the 1–5 Likert rating scale we use. Given no

other information, it appears very clear that we can add up to 750 ms of delay without

changing the rating by more than 10%.
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App 0ms 50ms 250ms 500ms 750ms
MapQuest 0.91 2.25 1.39 0.00 0.25

Pandora 1.10 0.96 1.22 1.08 0.88
Pinterest 1.08 1.49 0.95 0.89 2.06

WeatherBug 0.88 1.96 1.65 1.41 1.64
Translate 0.14 1.69 0.54 1.86 0.07

Figure 3.8: User satisfaction varies considerably across users. Rating variance across users
for each combination of application and delay.

Delay tolerance for additional delay varies by application

We also considered the effects of introducing delay into individual applications, while

still grouping all users together. Once again, we used TOST tests to identify where user

satisfaction changed significantly compared to the no-delay case. These results are shown

in Figures 3.6 (threshold of 0.5) and 3.7 (threshold of 1.0).

As one might expect, some applications experience more detrimental effects from in-

troduced delays than others. For Pandora and Pinterest, we find that for a threshold of 1.0

(that is, one satisfaction rating) there is no statistically significant change in satisfaction

caused by injecting delays (p < 0.05). For Google Translate more variation occurs, and for

WeatherBug and MapQuest we can see that these applications are much more sensitive

to additional delays. If we lower the TOST threshold to 0.5, we have less confidence that

there is no change to satisfaction, although this may be simply due to the relatively small

amount of data we were able to collect at this granularity.

Delay tolerance for additional delay varies across users

Figure 3.8 shows variance of user-perceived satisfaction for each of the delay levels. Re-

call that our test cases are randomly chosen and arrive at random times. What we are

resolving here is that a given level of delay is likely to affect different users differently,
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Users sorted by variance→

Figure 3.9: User satisfaction varies considerably across users. Variance of satisfaction for
each user (horizontal axis), ranked by variance.
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and also the same user differently across time.

Figure 3.9 illustrates this further. Here, for each application, we computed the variance

of satisfaction for each individual user, aggregating over the different delays (which have

equal probability). We then present each user’s satisfaction variance, sorted by variance.

We see that, for example, user 11 has the highest variance for MapQuest and Pandora,

but is second or third in the rankings for the other applications.

Since the tolerance for additional delay varies across applications, and users, it seems

natural that a real system should try to identify the more delay-tolerant users as particular

opportunities for improving the request process.

3.4 Conclusions

We have considered the prospects for shaping the interactions between the frontends and

cloud/datacenter backends of mobile applications. In particular, we considered delaying

requests produced by the frontend and sent to the backend. Introducing such delays

could be the mechanism for shaping the arrival process of the requests at the backend. Of

course, too many delays or delays that are too large could irritate users.

There seems to be considerable opportunity to introduce delays without affecting user

satisfaction. We developed a system that augments Android mobile applications with a

delay component, and applied it to a range of popular applications. We then conducted

an “in the wild” user study in which users employed our augmented applications instead

of the ones they would normally use. The augmented applications would randomly add

delays and accept user feedback about satisfaction. Analysis of the study data shows,

among other things, the surprising result that delays of up to 750 ms can be introduced
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most of the time for most users without a major change in their measured satisfaction.

The results of this work may at first seem contrary to observations by Google [27,

53], Amazon [119], and others that suggest that even small increases in delay negatively

impacts users who depart from the service. However, my work differs significantly from

these works in at least two ways. First, we are considering mobile applications, not web

applications on desktop environments. Much of the user interface of a mobile application

quite smooth under delay as it is implemented on the mobile device itself, not on the

backend. Second, we are soliciting the satisfaction of the user directly by prompting them,

instead of indirectly by seeing if they stop using the application. We claim that users

should be treated differently based on their individual tolerance for delay.
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Chapter 4

To what extent can we shape traffic while

not irritating users?

In this chapter I discuss the work that I did in developing and testing an algorithm that,

by selectively introducing delays, can shape the characteristics of a user network request

flow to be more like those of a desired distribution. In the previous chapter we found that

delays of up to 750ms are tolerated by users, and so we use this as an upper limit of what

acceptable delay.

We consider an approach which selectively delays requests originating at users to the

datacenters backing their applications so as to shape the arrival process at the datacenter

as Poisson arrivals (exponentially distributed interarrival times). This is a well-known

arrival process particularly suitable for leveraging classic queuing analysis in the design

of scheduling systems. We simulate this using the traces acquired from the user study.

These traces also allow us to determine the likely effect on per-user satisfaction of our

introduced delays. From this, we can evaluate the trade-off between our backend-centric

goals for introducing the delays (Poisson arrivals), and our frontend-centric goals (main-
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taining user satisfaction with performance). There exist trade-off points where we can

make the arrival process considerably more Poisson-like while not introducing delay that

leads to dissatisfaction.

The contributions of this work are:

• We describe a potential algorithm that uses this headroom and varying tolerance to

introduce delays that shape the user request stream.

• We evaluate this algorithm, in trace-based simulation, and find that there exist

trade-off points where we are able to more closely match the Poisson arrival and

rate limiting goals, while not reducing user satisfaction in a significant way.

4.1 System

We consider shaping user traffic while staying within acceptable boundaries. Given the

results of the study of the previous Chapter, we selected 750ms as the amount of added

delay that a user is willing to tolerate for most applications. We implemented a queue-

based simulator which takes in user request arrivals, and delays each incoming request

according to the specified shaping method. In this way, we are able to simulate shaping

that might occur at any point along the request path, and stay agnostic to any final system,

but rather explore the potential of shaping.

Figure 4.1 depicts how we envision the shaping to take place in a real world sys-

tem. End users generate request workloads through their normal interactions with their

applications—many actions on the part of the user will require additional content to be

fetched from a datacenter, whether it be in the form of directly requested content such as

text or images, or content that needs to be computed, such as travel routes, translations,
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Figure 4.1: The kermit shuffle as we envision it in a real world scenario

etc. These request streams would pass through the Kermit shuffle, which is informed

both by the value of the acceptable delay envelope of the user, and by the desired work-

load characteristics of the backend datacenter. Ideally, the request stream that would then

flow out of the shuffle would have characteristics that were more in line with the desired

ones, while staying within the users’ envelope.

4.2 Algorithm

Our algorithm attempts to shape request arrivals such that they appear to have been

drawn from a Poisson distribution. Poisson arrivals are a desirable property both in terms

of easing the analysis of a system from a queuing theory perspective, and because they

are less prone to the Noah Effect [136] in which traffic bursts aggregate across multiple

timescales. It is important to note that other forms of shaping are certainly possible—our

algorithm is intended as a demonstration of the concept of using the leeway provided by

user delay tolerance to do shaping of some form.

The algorithm itself is based on a fairly simple principle: by capturing network re-

quest events, and delaying those events by amounts of time which are drawn from an
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exponential distribution, the new output departure times should leave with a pattern

whose distribution is more akin to that of an exponential process. Put another way, if we

consider the inter-arrival times of a user trace, and convolve those with the inter-arrival

times of a known exponential process, the resulting inter-arrivals should look more ex-

ponential. The Kermit Shuffle algorithm takes as inputs an arrival stream, and a desired

output interarrival rate, and is made up of three primary components, which loop the

information through the system:

Input arrival estimator : As input events come in to the Shuffle, we must be able to

estimate the current rate. We do this via an exponentially weighted moving average

(EWMA), defined as

Ei = α× Ei−1 + (1− α)× (Ai − Ai−1)

where E is the estimated rate, and A are the times of the arrivals, and α is in the range

(0, 1]. The higher that α is set, the longer it takes for a change in rate to be reflected by

the estimator, but by the same token this also means that outliers are less likely to throw

off the estimate. We use this estimate as a potential basis for the exponential distribution

from which we draw our delays.1

Output departure estimator : As requests leave the system, we track their rate with an

EWMA. We then take the difference of this output rate and the desired output rate, and

consider that the instantaneous error in our process, which we then use to inform our

delay generation.
1The EWMA would “reset” if the interarrival time between requests became too long, as this indicated

user inactivity. We deem active times “sessions” and explain them further in the text.
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Delay generator : The meat of the Shuffle is the process by which delays are generated.

From the two rate estimators, we know the rate at which inputs are arriving, and we

know by how much our output rate is off. We start with the minimum of the input rate

and the desired rate2 and then apply what we call a “nudging factor” to it. The idea here,

is that if the output rate is consistently too far off from the desired rate, we can try to

increase the amount by which we are delaying. This nudging factor is calculated via a

proportional-integral (PI) controller, which is defined as:

PI(t) = Kp × err(t) + Ki ×
∫ t

0
err(τ)dτ

where Kp and Ki are the proportional and integral coefficients, respectively, and err(t) is

the error function at time t. The error is simply the difference between the output rate and

the desired rate. We add the output of the PI controller to the previously determined rate,

while ensuring that the rate stays non-zero. This nudged rate is then used to generate a

delay from an exponential process with that rate, and added to the arrival, which emitted.

The entire process is shown algorithmically in Figure 4.2, and schematically in Figure 4.3.

4.3 Evaluation

We evaluate the algorithm in simulation by feeding it with traces that we collected during

the user study. The traces collected contained tuples of the form

{time, appName, user, totalTime, delay, testCase}
2The minimum, because if the input rate is lower than the desired rate, we cannot speed things up!
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1: procedure SHUFFLE(arrival, interd)
2: interu ← EWMA(input) . Estimate interarrivals of input using EWMA
3: inters ← EWMA(output) . Estimate interarrivals of output using EWMA

4: m← min(interu, interd) . Limit the shaping interarrival
5: err ← inters − interd . how much is the shape off
6: nudge← PI(err) . nudge with PI controller
7: m← max(0.001, m + nudge) . ensure nudging is not negative
8: delay← exp(m)
9: arrival += delay

10: end procedure

Figure 4.2: Kermit Shuffle User Traffic Shaping Algorithm.

ΣΣ
P Kp*e(t)

Ki*∫0
t e(τ)dτI 

user
process

Shape
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Figure 4.3: Schematic view of the Kermit Shuffle algorithm, which makes the estimation
and feedback of data clear.
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Recall that each test case ran for one minute, and during this time all network requests

were delayed. For this reason, we have considerably more requests than test cases, and

for our simulation we use all 140,401 collected records. For each simulation, the trace

was segmented into “sessions”, where a session was defined to be any section of requests

where no interarrival was greater than 60 seconds. In other words, we consider bursts of

arrivals that correspond to application activity that is typically driven by the user.

For each session, we compare the original and shaped session using quantile-quantile

(or Q-Q) plots, an example of which is shown in Figure 4.4. The desired shape in each

plot is the solid diagonal line. If the points were to line up exactly on that line, we could

confidently say that the two data sets plotted were drawn from the same distribution. We

fit a line to each graph using a least squares fit and quantify the fit with an R2 value. We

can then compare the original and shaped graphs via the difference in R2 values, which

we refer to as ∆R2. This delta is defined as

∆R2 = R2
shaped − R2

input

The closer R2 is to 1, the closer the quartiles of the trace are to being on the desired di-

agonal in the Q-Q plot, so if the change in R2 is positive, this means that we have made

the interarrivals more exponential-like, and the bigger the change, the more effect we

have had. In the figure, the ∆R2 is 0.1822. Remember that R2 ranges from 0 to 1, so this

represents a fairly significant shape in changing.

It is important to note that evaluations were done across sessions, in order to capture

local shaping (as sessions may have differing rates), however the algorithm has no aware-

ness of such structure, and simply operates on the rate provided via the estimators, thus
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Figure 4.4: Example of the effect of the algorithm on shaping an input. The input (top
graph) has been improved by∆R2 = 0.1822, leading to the much more Poisson-like output
(bottom graph).

needing no a priori knowledge.

For each of the evaluations, the shaping was run 30 times on each trace, and the results

averaged in order to estimate the ensemble average behavior. In addition, for each session
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the Q-Q comparison is run 30 times, as the distribution being compared to in the plot

is itself randomly generated each time. For the PI controller and EWMA estimator, we

conducted multiple runs and settled on constant values of Kp = 0.9, Ki = 0.5, α = 0.8 as

optimal.

We additionally want to see how the algorithm performs across varying loads. To do

so, we set the desired rate according to a variable system load, where load is defined as

loadsys = interdesired
intertrace

, and intertrace was defined as the average of the trace. It is important

to note that this information is not needed during shaping, it simply provides us with a

method of evaluating performance across various loads.

Individual users can be shaped mildly

Figure 4.5 presents the results of running the algorithm on an individual user. For each

load factor, we report the average ∆R2, the average delay introduced to each request,

as well as the 95th and 90th percentile of the delay introduced. For this evaluation, we

consider the point where the 95th percentile delay grows beyond the acceptable tolerance

envelope as the limit for shaping.

As a reminder to the reader, we simulate differing load conditions by setting the de-

sired output interarrival relative to the incoming interarrivals in order to test how the

Kermit Shuffle performs at differing loads. We can see that as the load level increases to-

wards 1.0, the ability of the shuffle to shape towards exponential interarrivals increases.

This trend is encouraging, as the ability to shape traffic becomes more meaningful as

load levels increase. Consider a canonical datacenter—as the load of incoming traffic ap-

proaches 1.0, it is likely for queuing delays to start accumulating, and if this load stays

above 1.0 for any meaningful amount of time, the delays will begin to increase dramati-
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cally.

We found that the average R2 for the sessions of the user trace was around 0.58, so

we would not expect to see ∆R2 of greater than 0.42 in the optimal case. We can see from

the figure that for User 1, the limit occurs at a load of 0.5, with ∆R2 = 0.0665. If we

consider keeping the average injected delay below the envelope, we can shape the trace

with ∆R2 = 0.1204. Given our bounds, this is relatively good, but ultimately we would

like to be able to do better.

We ran the same analysis on each user from the study, and the results are enumerated

in Figure 4.7. For all user traces, the R2 of the case was generally between 0.5 and 0.6.

We can see that the ability to shape and the load at which we can shape traffic without

annoyance varies quite a bit between users, which indicates that shaping at the user level

will produce the most beneficial results overall. As in the case of the single user, the ability

of the Shuffle to shape increased with rising load, but the actual load at which tolerable

delays occur varies.

Aggregated users can be shaped minimally

Because the matter of where shaping would be most optimal is still an open question,

we also wanted to test how the Kermit shuffle would perform when we aggregated the

user traffic traces together and pushed them all through the Shuffle, as a simulation of the

Shuffle dealing with traffic coming in from multiple users.

The results of running the Shuffle on all the traces are shown in Figure 4.6. Much

the same as with individual traces, ability to shape increases with load, however the ∆R2

ends up being significantly lower, roughly half of that of the previous results. We see that

the limit of shaping for aggregate users occurs at a lower load of 0.1, with a ∆R2 of 0.0053,
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Load ∆R2 Avg Delay 95 %ile 90 %ile
0.1 0.0102 0.0389 0.1479 0.1054
0.2 0.0236 0.1014 0.2963 0.2118
0.3 0.0408 0.0947 0.4448 0.3186
0.4 0.0537 0.2548 0.5925 0.4239
0.5 0.0665 0.2206 0.7403 0.5324
0.6 0.0771 0.2458 0.8949 0.6394
0.7 0.0892 0.4656 1.0505 0.7472
0.8 0.0990 0.2271 1.1949 0.8515
0.9 0.1071 0.3547 1.3407 0.9604

1.0 0.1204 0.4582 1.4912 1.0669

Figure 4.5: Shaping of trace of User 1. Ability of the algorithm to shape an individual
user’s traffic increases with load. For this user, the algorithm can produce a ∆R2 = 0.0665
while staying within the delay tolerance envelope supported by the user study 95% of the
time (bold). It produces ∆R2 = 0.1204 by staying in envelope on average (italic).

Load ∆R2 Avg Delay 95 %ile 90 %ile
0.1 0.0053 0.1316 0.4518 0.3246
0.2 0.0101 0.2632 0.9048 0.6494
0.3 0.0170 0.3948 1.3543 0.9654
0.4 0.0223 0.5265 1.8060 1.2982
0.5 0.0299 0.6581 2.2828 1.6272
0.6 0.0337 0.7898 2.7273 1.9482
0.7 0.0386 0.9214 3.1769 2.2785
0.8 0.0462 1.0531 3.6138 2.6083
0.9 0.0509 1.1847 4.0911 2.9127
1.0 0.0552 1.3163 4.5210 3.2436

Figure 4.6: Ability of the algorithm to shape aggregate traffic increases with load. Bold
indicates staying within delay tolerance 95% of the time. Italic indicates staying within
delay tolerance on average.

and 95th percentile delay of 0.4518. Given that the R2 of the aggregate traffic is around

0.61, this represents a significant decrease in shaping ability, and potentially suggests that,

at least for this algorithm, it may end up being more fruitful to shape at the individual

user level.
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User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∆R2 0.067 0.012 0.007 0.017 0.000 0.012 0.019 0.005 0.008 0.005 0.011 0.012 0.006 0.005 0.008

Load 0.5 0.2 0.2 0.2 0.1 0.5 0.2 0.1 0.1 0.1 0.2 0.3 0.1 0.1 0.1

User 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
∆R2 0.006 0.018 0.012 0.003 0.000 0.056 0.009 0.009 0.009 0.033 0.003 0.039 0.009 0.024 n/a

Load 0.1 0.3 0.1 0.1 0.1 0.4 0.1 0.1 0.2 0.3 0.5 0.3 0.2 0.2 n/a

Figure 4.7: Shaping results for each individual user, showing the maximum load and ∆R2

achievable while staying within the 750 ms delay tolerance envelope supported by the
user study 95% of the time.

4.4 Limitations

If we take a step back and think about the meaning of our above findings, we notice

that we can indeed produce results that stay inside of the apportioned user envelope, but

perhaps not in the most critical of times. If we think about need for energy savings at

a datacenter, our shaping would be most meaningful if it could produce effects at loads

that approach 1, that is, when the datacenter is close to or becoming overloaded. The

shaping power of our approach does scale as load goes up, however we are unable to

stay within acceptable delays. Below I describe several attempts that we undertook to

solve this problem.

Alpha shaping

When we began to dig into how the elements of the algorithm were behaving, we noticed

that the output of the PI controller had a tendency to go “off the rails”, and sink into ex-

treme negatives for long periods of time. We noticed that these events typically coincided

with times when the rate estimator would spike to large values. An example of this is

shown in Figure 4.8.

Despite us setting the α value relatively high (0.8), our rate estimator was behaving

rather erraticaly. Due to the nature of using a randomly generated value for the delay,

our thought was that we were giving too much power to the instantaneous variation of
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Figure 4.8: With a set α the output of the PI controller can go off the rails

added delays with respect to rate estimation, especially during bursts of activity. When

our initial attempt of simply scaling up α to higher values like 0.95 did not correct this

behavior, we began exploring dynamic methods of setting the α-factor. The shapes are

shown in Figure 4.9 and results enumerated in the text below. The idea behind all of

these shapes is to scale α down as m, the rate of the exponential, goes up.

Linear scaling : Our first idea was to simply linearly scale α down as the exponential

rate increased. The results of this function are shown in Figure 4.10. While α does respond

to the rate, it does not seem to be enough to overcome the volatility of the arrivals. The

equation used to generate the figure is:

α(m) = 0.95− 4.0 ∗m3

3we cap α to never go below 0.
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Figure 4.9: The three different functions used to try to scale down the α factor of the
EWMA for higher exponential rates.

Shaped sigmoid function : The sigmoid function experiences a much steeper fall than

a simple linear relationship, so this is what we tried next, the results are shown in Fig-

ure 4.11. Despite the scaling effects, we still seem to have large PI error buildup. The

shaped sigmoid function used to generate the figure is:

α(m) =
1

1 + e0.05∗−m

Exponential decay : Our final attempt was to use an exponential decay function, due

its much higher initial dropff, the results are presented in Figure 4.12. Once again, our

scaling factor is unable to effect any reduction in the building of PI error. The function

used to generate the figure is:

α(m) = −(1− 0.95) ∗ e
1

0.05∗−m
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Figure 4.10: Linear α scaling is ultimately unable to reduce PI error accumulation
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tion
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Figure 4.12: Exponential α scaling is ultimately unable to reduce PI error accumulation
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Evaluation strategy

One additional thing we realized here is that our method of evaluating distribution fit

with a linear regression / Q-Q plot approach may not be the best one. Since we are

constantly varying the mean of the exponential used to generate the delays, we my be

producing an output whose characteristics cannot be compared to a singly generated

distribution. After all, what does it mean to be producing outputs whose departure times

are drawn from distributions of dynamically varying means? We would like to further

address and explore this as future work.

4.5 Conclusions

As a proof of concept of user traffic shaping, we developed an algorithm that introduces

delay to requests in a controlled manner to attempt to make their arrival process at the

backend have exponential interarrival times (Poisson arrivals). We simulated the algo-

rithm using the trace data from the study. While keeping the introduced delays within

the tolerance determined by the study, the algorithm is able to appreciably affect the ar-

rival process, pushing it significantly closer to Poisson arrivals.
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Chapter 5

Does environmental prompting change

the delay tolerance envelope?

In this chapter, I describe work that was done in designing a user study which would both

replicate the results of the previous study on a larger study population, while letting indi-

vidual users control their own delay settings, and in testing the power of environmental

prompting.

In the previous chapter, I described a user-study that was performed to explore the

space of the user delay tolerance envelope, wherein we found that for a population of

students at Northwestern University, delays of up to 750ms could be introduced to cloud-

backed mobile applications with no statistically significant loss in user satisfaction. Given

previous work on correlating delays with user satisfaction, this result was surprising, and

merited further study. Given our collaboration with Peking University, we had ready

access to a distinct study population in the pool of university students from there.

To the best of our abilities, and to the extent that the PKU user-study framework al-

lowed, we recreated the user-study of the previous chapter, in order to strengthen our
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belief in the results of that study. We leverage the same toolchain to interpose on exist-

ing popular Android applications. In order to choose applications that would be popular

with our study demographic, we selected popular applications from the Wandoujia [132]

Android application market, such that their characteristics closely matched the applica-

tions from the previous study. Using the toolchain, we modify these popular applications

such that interactions between the frontend and backend flow through code under our

control, allowing us to inject delays into the applications. Our code also adds a method

for users to control their delay setting, and users are asked to set their delay as high as

possible while not annoying them. A core outcome of this study is that, even when users

were allowed to set their own delay, we see a similar level of acceptable delay as the

envelope, that is, values around 750ms.

Additionally, we wanted to test our theory that environmental prompting would in-

crease the delay tolerance envelope. By “environmental prompting” we mean notifying

the user that their actions had direct environmental repercussions—specifically telling

them that the higher they set the delays, the more environmentally friendly they were be-

ing. Users from the study were randomly placed into reconsidered or considered groups,

wherein the only difference was whether that group would be environmentally prompted

or not. A fascinating result is that there was no statistically significant difference in delay

settings between the two groups.

The contributions of this work are as follows:

• We show, via a user study involving 70 users running 5 popular Android appli-

cations in a controlled lab study, that even when users are asked to set their own

delay, that the delay tolerance envelope is large. This envelope varies by user, and

by application.
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• We evaluate several methods for analytically determining any given users envelope.

• We show, using the same study, that there is no statistically significant difference

in the envelopes of users who have been environmentally prompted vs. those that

have not been.

5.1 Frontend augmentation

Our user study is based on popular Android Java applications that are available as An-

droid application packages (APKs) from the Wandoujia mobile marketplace. The process

and architecture of the application augmentation is based on the same process as that of

Section 3.1, with a few notable differences. In addition to the delaying proxy, the frame-

work introduces a separate component, DelayController, which displays and controls the

current delay setting on the mobile phone. The DelayController functionally sits in the

same place as the FBCollector, and the functional flow of the whole augmented applica-

tion is very similar to that of Figure 3.1.

DelayController sits between the DelayController and Rate-Message Receiver, and

provides the same flow of information through the augmented application as FBCollector

did. Instead of providing a scale for rating satisfaction though, DelayController creates

an display interface, which is shown in Figure 5.1. The interface is comprised of two main

parts:

1. The taskbar notification icon. Shown in the left-hand side of the figure, the notifi-

cation icon displays what percentage of delay is currently being introduced into the

application.
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Figure 5.1: DelayController interface, which shows the user the current delay setting (30
%), and allows the user to control the delay using the volume keys, shown over Kingsoft.

2. The user-accessible controls. DelayController catches when the user presses the vol-

ume up / down keys, and uses those events to change the delay setting. The volume

up key will increase the delay, and the volume down key will decrease the delay.

In addition to the interface on the mobile device, study subjects were assigned to a

computer terminal in the study environment, where they would be given instructions via

a web-based interface. This website would also be responsible to notifying the user of the

beginning, end, and mid-task notifications.
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5.2 User study

With this study we want to answer 3 fundamental questions:

1. Will we find the same delay tolerance envelope (750ms) of the study in Chapter 3 in

a distinct user population?

2. Will we find a similar envelope, even while giving users direct control over the delay?

3. Will we find any differences between a prompted and an unprompted population?

In order to answer these questions, we used the interpolation framework of Section 5.1 to

augment 5 popular applications, and designed a study in which existing users of those

applications would be allowed to set their own delays, while accomplishing pre-set tasks

in those applications.

Applications

We chose 5 of the most popular applications from the Wandoujia application marketplace,

applications where we would have no problem finding existing users. We wanted to

choose applications that were similar to the applications of the user study from Chapter 3,

so that similarities in tolerances would be likely to be meaningful. We chose the following

applications as our representative application set for this study

• Douban Music: A streaming music application connected to Douban, a social net-

work. Similar to Pandora.

• RenRen: A social networking application where users can post status updates and

pictures. Similar to FaceBook and Pinterest.
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• KingSoft: An application in which users can input words or phrases to translate to

and from various languages. Similar to Google Translate.

• Weather: An application for finding weather conditions and forecasts. Similar to

WeatherBug.

• Youku: A service where users can upload and watch videos. Similar to YouTube1

Subjects

Peking University does not have a formalized IRB process, however we designed the

study in a very similar way to the original US study, and made sure to take the same

steps to preserve subject anonymity and not collect any personally identifying informa-

tion. We advertised to the broader Peking University population via flyers posted in

computer labs and University hallways / bulletin board, and email advertisements. Our

selection criteria was that the subject had to be familiar with mobile phones, and have

familiarity with at least some of the applications that they would use during the study.

We selected the first 70 participants who responded and qualified. As part of the study,

each subject would also fill out entrance and exit questionnaires, which included demo-

graphic information. At the end of the study, each participant was rewarded with a gift

card worth 35 Chinese Yuan (approximately 5 USD). The demographics are enumerated

in Figure 5.2.
1We attempted to augment a map application similar to MapQuest, but the two popular applications,

BaiduMap and GaodeMap both used hash checking code in the application that prevented augmented
versions from being created.
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Users

Age 18-25 45
25-35 25

Gender Male 25
Female 45

Area of Study

Computer Science 7
Science / Engineering 20

Medicine 9
Law / Policy 16

Other 18

Length of smartphone usage

0-1 Months 0
1-6 Months 0

6 Months - 1 Year 1
1-2 Years 2
2+ Years 67

Smartphone Type Owned Android 39
iOS 31

Carrier China Mobile 45
China Unicom 25

Figure 5.2: User study demographics.

Methodology

Each subject would use a lab phone provided to them, and complete all tasks in the lab.

Logs would be kept on the phone as well as a coordinating server, and be tagged with

an anonymized user identification number. The duration of the study was approximately

one hour.

When the subject arrived, the proctor would take them to their station, and explain

how the study was laid out. Each task would take 10 minutes, and was split into 3 phases:

• 0 - 2 min: This would be time when a subject would familiarize themselves with the

application and task, in case they had not used this task before. During this time the

subject was asked not to change the delay2.
2Although the user was asked not to change the delay during the introductory 2 minutes, some users
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• 2 - 6 min: At the 2 minute mark, the subject would be prompted via an alert on

the website that they could now change the delay in the application, and would be

asked to set the delay as high as possible, such that it did not annoy them or in-

terfere in their ability to complete the current assigned task. Depending on which

study population the subject had been assigned to, they would also be reminded

that higher delay settings would translate to more environmentally friendly behav-

ior.

• 6 - 10 min: At the 6 minute mark, the subject would be reminded via an alert on the

website that they could use the phone interface to change the delay at any time. We

were careful not to tell the subject to try to increase the delay at this point, as that

might bias how high they set it. At the 10 minute mark, the subject would be told

that the current task was now complete, and they would be prompted to continue

on to the next page in the instructions.

Testbed

The user study was set up as a lab-controlled study—subjects would enter the lab, and a

proctor would take the subject to their station, and explain to them how the study would

take place. Each station was set up with the phone to be used: A Xiaomi Hongmi 2A

phone with CyanogenMod 11 (a popular free Android ROM based on Android 4.4.4)

installed on it. The station also had a desktop computer, which had a browser open to the

study website. The study website would provide the user with instructions for the study,

instructions for each tasks, and any necessary prompts, as well as relay information to

did change the settings here. We do not consider these levels in our analysis
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uKu\...)

Smartphone

1. User clicks Task Start

2. The server is notified of task events 
via the page (start, 2 minutes, 6 
minutes, end)

3.The server notifies the overlay app to record the event. 

4. Event is captured and logged to 
a local file

1. User changes delay using interface

2. Test app is notified to change its delay

Figure 5.3: Set up of testbed for the PKU study, showing the flow of information between
the user, mobile device, instruction website, and coordinating server.

the coordinating server. All interactions between the user, phone, website, and server are

displayed in Figure 5.3.

When a user began a task, the instruction website would create a timer to measure the

progress in the current task. At the 0, 2, 6, and 10 minute marks, the site would do two

things: 1. Send a message to the coordinating server, with a message as to which event

had just occurred, and 2. prompt the user with an alert, with the message pertinent to the

phase of the task they were at.

The coordinating server would log all events, in order to keep redundant information

in case of any message loss, and would also send a message to the mobile device. The

DelayController component of the application would receive this message, and log all



116

received events in a file as a tuple of the form:

{timestamp, appname, event}

Whenever a subject changed the delay via the interface, the DelayController would also

log the change via a tuple of the form

{timestamp, delay}

As well as logging each network request via a tuple of the form

{timestamp, totalTime, extraDelay, delaySetting3, screenOn}

Once a subject finished all tasks and the exit questionnaire, all of the logs would be col-

lected from the device, validated against the logs of the coordinating server, and packaged

up for analysis.

5.3 Tasks

In order to simulate real-world conditions, we designed tasks for subjects to complete in

each chosen application:

• KingSoft: The subject was given a passage from a freely available copy of “Alice’s

Adventures in Wonderland” by Lewis Carroll, and asked to translate the passage
3We measured the desired amount of delay, as well as the actual amount of delay that was injected,

which varied slightly due to lack of guaranteed precision in the delay mechanisms available. For example,
in one collected request, the delaySetting was 600.0, but the recorded extraDelay was 610.0
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one sentence at a time.

• RenRen: The subject was asked to browse content from their friends in the applica-

tion, and to browse through their various photo albums.

• Douban Music: The subject was asked to find and listen to various songs, switching

to new songs after every 30 seconds or so.

• Youku: The subject was led to a channel that contained short videos (on the order

of 30 seconds), and asked to watch those videos.

• Weather: The subject was given a list of locations, and asked to find both the current

conditions and weather forecast of each of them.

5.4 Study results

Our study involved 70 subjects, and produced meaningful data from 67 of the subjects.

For each subject, and each application, we collected the times of the events for each task

(begin, 2 minute prompt, 6 minute prompt, end), the time and delay level of any time the

user changed the delay, as well as properties about each network request that was sent by

the study applications.

In total, the study produced 7780 delay setting changes, which we use as the basis

for the analysis. One obvious question is—how do we determine what a user’s ultimate

tolerance envelope was from a time-series of setting changes? We explore a few different

methods of determining the envelope. As we decompose the results, we bold findings

which findings have strong statistical confidence behind them, that is, findings with p-

values of lower than 0.05 (95% confidence level).
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Average calculated as area under the curve

Figure 5.4: Calculating the delay tolerance envelope using the area under the curve of the
delay setting over time. Left vertical line indicates 2 minute prompt, right vertical line
indicates 6 minute prompt. Average for this curve is 524.64

Area under the curve

Our first method of evaluating the tolerance envelope is by treating the recorded delay

settings during a task (the 10 minutes one user is using one application), and calculate the

average using the area under the “curve”. An example of this is shown in Figure 5.4. We

calculate the average of 3 distinct time-periods:

• Considered: This is the time period between the 2 and 6 minute marks during the

tasks.

• Reconsidered: This is the time period between the 6 and 10 minute marks during the

tasks, after the user has been reminded that they can change delay.

• Total: This is the total period during which the user is allowed to change their delays,
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Considered Reconsidered Total
Avg [mS] StdDev [mS] Avg [mS] StdDev [mS] Avg [mS] StdDev [mS]

Nongreen 640.48 186.31 758.23 228.00 704.16 189.26
Green 642.44 186.44 775.66 218.45 708.56 186.99

Figure 5.5: The averages and standard deviations indicate that environmental prompting
has no effect.

from the 2 to the 10 minute mark.

We had a total of 70 study subject, each of which used all 5 of the study applications. Half

of the subjects were placed in the “green” population, the other half in the “nongreen”

population, meaning we had the opportunity to collect up to 175 average values for each

time period for each population. Due to some validation errors in the lab setup, we were

only able to collect 165 values from the “green” population, and 146 values from the

“nongreen” population. Figure 5.5 enumerates the averages and standard deviations of

this collected data.

The results suggest that there is little to no difference in envelope settings between

the green and nongreen populations. We further confirm this by running a T-Test and

a Two One Sided T-Test (TOST)—with thresholds of 50ms and 100ms (corresponding to

5% and 10% of total delay, respectively) on the populations, results shown in Figure 5.6.

We can see that for the Considered and Total data, all statistical tests say that there is no

difference between the green and nongreen populations. For the Reconsidered data, a

TOST cannot tell us with 95% confidence that these populations behave the same, and so

it bears further looking into.

In designing the study, we wanted to ensure that subjects would not “forget” about

the delay settings, and so added a reminder in the middle of the active part of the task.

The careful reader will remember that this is the prompt at the 6 minute mark which
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p-values T-Test TOST
thresh = 50 thresh = 100

Considered 0.71 0.02 0.00
Reconsidered 0.49 0.10 0.00

Total 0.84 0.02 0.00

Figure 5.6: Statistical tests indicate there is no effect of environmental prompting on any
of the trace regions. Statistically significant results (p < 0.05) are in bold.

Nongreen Green
Average ∆ms T-Test Average ∆ms T-Test

Considered 650.48 107.75 0.00 642.44 133.22 0.00Reconsidered 758.23 775.66

Figure 5.7: Once users have been reconsidered (reminded) of their ability to change the
delay setting, they increase the amount.

delineates the Reconsidered and Considered regions. We were careful to try to not di-

rectly tell the user that they could increase their delay, but rather to remind the user that

they could control their delay, and change it with the volume button interface. Figure 5.7

enumerates the averages of the Reconsidered and Considered regions for both green and

nongreen populations, and also shows the p-value of a T-Test done to compare the re-

sults. We can see that there is a difference of more than 100ms in each population, with

a confidence level of > 99%. This suggests that, at least in an initial training phase, it

would be beneficial to have reminders to users that they have the ability to control their

delay settings.4

Applications In addition to analyzing the data for the entire set of users, we also ran

statistical tests to compare the results for green vs nongreen users of each application.
4To be clear, this would be beneficial for both “parties” involved. It would be to the benefit of the

overall system since it increases the amount of acceptable delay, and it would also be beneficial to the end-
user, especially at times that they found the delay to be distracting. If the user were to forget that they could
improve their performance, if perhaps only momentarily, they would simply get more and more frustrated
with no recourse.
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p-values Considered Reconsidered Total
T-T TOST (50) TOST (100) T-T TOST (50) TOST (100) T-T TOST (50) TOST (100)

Douban 0.19 0.60 0.21 0.50 0.45 0.19 0.84 0.21 0.04
Kingsoft 0.92 0.16 0.02 0.58 0.31 0.06 0.72 0.22 0.03
RenRen 0.56 0.32 0.07 0.89 0.22 0.05 0.85 0.18 0.02
Weather 0.81 0.21 0.03 0.98 0.19 0.03 0.91 0.18 0.03
Youku 0.96 0.17 0.03 0.70 0.34 0.11 0.83 0.23 0.04

Figure 5.8: Once we segment the data into individual applications, the TOST does not
indicate as strongly that green and nongreen behave the same, but the T-Tests do not
indicate that they behave differently.

The results are presented in Figure 5.8. At this level of segmentation the TOST results

are no longer strong enough to confidently say that the green and nongreen populations

behave the same, however by the same token the T-Test results do not indicate that they

behave differently, so the results seem to indicate there are no real differences for any of

the applications.

Max by interval

As mentioned at the beginning of Section 5.4, there is not necessarily one simple way to

establish a delay tolerance envelope from the study results. In addition to the area under

the curve method, we evaluate the results of the study using what we call a Maximum

by interval method. The basic idea behind this method is that—during the task duration,

each subject is adjusting the delay setting as they accomplish the task, and so rather than

averaging the setting over the duration, we look at the maximum delay setting held for

at least X seconds, for varying values of X. An example of this is shown in Figure 5.9.

The results of the analysis are presented in Figure 5.10. The results of the max for

interval analysis confirm our findings from the area under the curve analysis—when an-

alyzing the two sample populations via both T-Test and TOST, we find no statistically

significant differences between green and nongreen subjects.
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Figure 5.9: The top graph displays a delay setting trace from a single application an user,
the bottom graph shows the maximum delay setting for that trace.

Threshold [s] T-Test TOST (thresh = 50) TOST (thresh = 100)
0 0.59 0.11 0.00
5 0.78 0.00 0.00

10 0.72 0.01 0.00
20 0.70 0.01 0.00
30 0.66 0.02 0.00
60 0.55 0.06 0.00
120 0.77 0.05 0.00

Figure 5.10: Comparing green vs nongreen populations using the “max by interval
method, TOST still shows that the populations behave the same.
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Applications When we run the comparison for each application using the maximum

by interval method, we find largely the same results as the area under the curve method.

Results are enumerated in Figure 5.11.

Last level

As a last method of evaluating the user study, we consider the last value that a subject

left the delay at. The idea here is that, after taking time to adjust their settings, and being

reminded of their ability to control their delay, the last setting could be indicative of the

subject’s “true” delay tolerance envelope.

Average Delay Using the last level method, we find a somewhat higher delay tolerance

envelope, but are ultimately unable to say with enough confidence that there is any dif-

ference between the green and the nongreen populations. The results of this analysis are

presented in Figure 5.12.

Applications When we split the analysis of the populations into the different applica-

tions, the last level approach is unable to tell is confidently that the green and nongreen

populations behave either different or the same. The results of this analysis are presented

in Figure 5.13.

5.5 Conclusion

Our purpose in conducting this study was twofold:
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p-values T-T TOST (50) TOST (100)
Interval = 0

Douban 0.33 0.60 0.32
Kingsoft 0.52 0.37 0.10
RenRen 0.87 0.28 0.10
Weather 0.44 0.48 0.19
Youku 0.85 0.28 0.09

Interval = 5
Douban 0.79 0.21 0.03
Kingsoft 0.19 0.56 0.16
RenRen 0.84 0.09 0.00
Weather 0.55 0.26 0.03
Youku 0.87 0.12 0.01

Interval = 10
Douban 0.80 0.23 0.05
Kingsoft 0.35 0.44 0.11
RenRen 0.39 0.27 0.02
Weather 0.58 0.24 0.03
Youku 0.87 0.12 0.01

Interval = 20
Douban 0.78 0.24 0.05
Kingsoft 0.55 0.31 0.06
RenRen 0.57 0.22 0.02
Weather 0.72 0.19 0.02
Youku 0.78 0.20 0.03

Interval = 30
Douban 0.89 0.20 0.04
Kingsoft 0.50 0.35 0.07
RenRen 0.77 0.17 0.01
Weather 0.60 0.25 0.03
Youku 0.78 0.20 0.03

Interval = 60
Douban 0.68 0.32 0.09
Kingsoft 0.55 0.33 0.07
RenRen 0.65 0.30 0.07
Weather 0.63 0.30 0.07
Youku 0.80 0.26 0.06

Interval = 120
Douban 0.57 0.40 0.14
Kingsoft 0.54 0.36 0.09
RenRen 0.95 0.22 0.05
Weather 0.74 0.27 0.06
Youku 0.80 0.29 0.08

Figure 5.11: Using the max by interval method and decomposing results for each applica-
tion, we can also no longer confidently say green and nongreen populations behave the
same, but the likelihood of them being different from T-Test results is lower.
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Average [ms] Std Dev
Nongreen 742.77 258.20

Green 788.15 242.62
T-Test TOST (t = 50) TOST (t = 100)
0.09 0.43 0.02

Figure 5.12: Last level analysis does not indicate lack of power of environmental prompt-
ing as strongly, but also does not confidently indicate the existence thereof.

p-values T-T TOST (50) TOST (100)
Douban 0.11 0.79 0.50
Kingsoft 0.23 0.55 0.17
RenRen 0.52 0.47 0.21
Weather 0.85 0.22 0.04
Youku 0.54 0.44 0.18

Figure 5.13: Evaluating applications under the last level approach unable to confidently
say green and nongreen populations behave the same.

1. To attempt to replicate the delay tolerance envelope we saw in the initial US study

of Chapter 3, and to give more robust evidence for the values of this envelope by

giving users direct control over their delay settings.

2. To analyze the effect of “environmental prompting” on the delay tolerance envelope

of users—that is, the effect of telling users that if they are willing to accept more

delay, their actions become more environmentally friendly / sustainable.

. In order to evaluate these avenues, we designed and conducted a user study in which

subjects were asked to complete tasks in 5 popular Android applications, and asked them

to set the delay on the Android smartphone as high as they would be comfortable with.

Subjects were separated into two populations—one with environmental prompting and

one without. We compared the envelopes of the populations via 3 different methods.

With regard to the delay tolerance envelope, we found levels that were very similar to

the results of the initial in-the-wild study of Chapter 3, where we saw that there was no
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statistically significant difference in the satisfaction level of users for delays up to 750ms.

Depending on which which method was used to calculate the envelope of a user, we

found that the average envelope for subjects of this study varied between 650-780ms.

A far more surprising result was that we found no statistically significant difference

between the green and nongreen populations when comparing all of the collected data.

When we broke down the data into per-application based results, we were not able to say

with > 95% confidence that the populations behaved the same, however we were also

not able to say that the populations were different.

Upon the conclusion of the analysis of this study, we arrived at two hypotheses as to

why the environmental prompting had no effect on the users of this study.

1. The lack of difference could be attributed to cultural differences between the United

States and China.

2. The lack of difference could be attributed to the fact that there is no virtue signaling

of any kind present in the study. It could be the case that a person is only motivated

to alter their behavior in a performance-degrading manner if their actions (and, im-

plicitly, the “goodness” of their actions) are visible to the world around them.

In order to evaluate both of these hypotheses, we designed and conducted additional

user studies, which are described in the following chapters.
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Chapter 6

Is environmental prompting culturally

dependent?

In this section, I describe work undertaken in studying how effective (if at all) environ-

mental prompting is in altering the delay tolerance envelope of mobile users. More specif-

ically, in the study of the previous chapter we found that there was no difference in green

(prompted) vs nongreen (unprompted) study subjects of a lab-based study conducted in

Beijing, China. One of our hypotheses for this lack of effect was that it could come down

to cultural differences. Since the initial in-the-wild study conducted at Northwestern

University did not include an environmental prompting component, we designed and

conducted an IRB-approved user study to test the effect of environmental prompting on

a US-based population.

In this study we created videos of Pinterest, a popular Android application, being used

for 30 seconds with differing levels of delay being injected into the application for each

video. We created a web-based survey in which subjects were shown each of the videos in

a random order, with no indication as to the level of delay, and asked to rate how satisfied
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they would be with the performance of the application for each of the videos. We were

able to collect data from 200 participants using the Amazon Mechanical Turk (MTurk)

online crowdsourcing platform, and present the results below. As a validation of both the

efficacy of MTurk as a source of data, and of the statistical power of the data collected, we

also ran the study on 100 participants in China using the SoJump online crowdsourcing

platform. This allows us to perform a direct comparison of the effect of environmental

prompting on both cultural populations, rather than inferring differences or similarities

between this study and that of Chapter 5.

6.1 Mechanical Turk

Amazon Mechanical Turk (MTurk) is an online crowdsourcing platform, designed to al-

low researchers, companies, and others to recruit online participants (known as “turkers”)

to accomplish paid tasks, such as filling out surveys, opinion polls, cognitive psychologi-

cal studies, perform identification tasks, etc. MTurk allows researchers to advertise their

tasks (known as “HIT”s1 to turkers, showing both a description of the task as well as the

monetary reward for successfully completing that task.

When a researcher creates their HIT, they choose how many participants are desired

for a given batch, and transfer funds to the MTurk system, which then makes the HIT

visible and available to turkers. Once a turker has completed their task, their results,

identified by a unique and anonymous Worker ID, are made available to the researcher

coordinating the HIT. The researcher is then able to approve or reject each individual

submission, based on the sanity and validation of results. Once a turker’s submission has
1Human Intelligence Tasks
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been approved, the monetary funds are transferred directly to the turkers account.

MTurk has been used often to conduct psychological studies, such as [18, 88, 89], as

well as in Human Computer Interaction [110] and in studying energy implications on

mobile devices [56]. The strength of the MTurk platform is that it allows a researcher to

advertise to a huge pool of potential participants, granting the ability to do large-scale

studies in a short time-frame, as well as lowering the costs of motivating any individual

user.

6.2 SoJump

Mturk provides the ability to filter participants based on various features, and since we

wanted to evaluate the effect of environmental prompting on a US-based population, the

one that we were interested in was their geographic location. Based on self-reported de-

mographics of turkers [69], at least 70% of the participant pool was US-based. However,

for our validation on a China-based population, we encountered difficulties in recruiting

users via the MTurk platform.

In order to recruit from a Chinese-based population, we decided to advertise our study

via the SoJump online crowdsourcing platform. SoJump is organized in much the same

way as MTurk, however the advertisement process is not a portion of the platform. Study

participants were advertised to via message boards at various Chinese academic institu-

tions, and so participants were almost exclusively college students. As with the Peking

University study of Chapter 5, there is no IRB approval process China, and so this study

was conducted under the same protections and review of the US study.
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6.3 Application augmentation via DPartner

In order to produce a controllably-delayed application, we once again turned to the seg-

mentation framework of DPartner, full details on DPartner can be found in Section 3.1.

The major differences in the usage of Dpartner for this study are:

• Since users will be reporting their satisfaction via a web-based application, we re-

move FBCollector—the visual frontend to the framework.

• Since we require direct control over the delay via a non-visible manner, we remove

the random setting of delay, and instead have Dpartner read the desired delay from

a configuration file placed on the smartphone upon application launch.

Videos of user interaction with the application are captured using the AZ Screen Recorder

application [59], which makes user interactions (touching the screen, scrolling, etc) visible

via a translucent white circle overlayed on the application. This allows a subject that is

watching the video to know exactly when user interactions with the application occur,

and lets them understand the delays that are occurring during the duration of the test

case.

6.4 Study implementation and hosting

In MTurk, researchers have the ability to create their HIT either directly in the MTurk

system, using basic forms, or to provide a link to a standalone survey, and have the par-

ticipant conclude the HIT by inputting a validation code in the task that is provided to

them from the linked survey. As a means of allowing more complicated interactions, ease

of portability, and ensuring that subjects had no way to “cheat the system” and skip tasks,
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we elected to implement the survey as a standalone application. The survey was written

in the Python Flask framework [105], and was hosted on the Amazon Web Services Elas-

tic Beanstalk [6] (AWS EB) platform, which allowed for rapid deployments and hosting

of the survey2. We used an EB instance located in Oregon.

For the China study, we use the same Flask-based application, running on an AWS EB

instance, however for this study the instance was located in Tokyo, to reduce latencies for

loading the videos.

6.5 User study

The goal of this study was to evaluate the hypothesis that the underlying reason behind

a lack of changed delay tolerance envelope from environmental testing in the preceding

study had been one of cultural context. Put plainly, we wanted to check if perhaps en-

vironmental prompting was appropriate for one study population but not the other one.

To this end, we once again leveraged the Dpartner framework to create a study in which

subjects would watch videos of a normal interaction with a popular application, and rate

their perceived satisfaction of the performance.

Application

We chose Pinterest as the application for this study for a variety of reasons—Pinterest is

an extremely popular website and its application is among the most popular free applica-

tions available on the Google Play application market, meaning that finding users famil-

iar with its concept and operation would not be difficult. In addition, the common usage
2There is no requirement to use an Amazon.com owned host for MTurk studies, this simply happened

to be the most convenient host for our purposes.



132

pattern of the application involves a lot of direct user interaction that causes additional

requests to be made to the datacenter backend, which in turn prompts more interaction,

so injected delays would be visible often and thus more likely to influence the satisfac-

tion of a test subject. We also had experience augmenting this application in our previous

study, and knew that we could do so with relative ease.

Subjects

Our study was IRB approved3, allowing us to recruit users from the entire US and Chinese

crowdsourced participant pools. We advertised the study to participants via the provided

framework task discovery mechanism, which allowed potential participants to pick tasks

based on description, duration, and compensation. Our selection criteria for each study

was that participants had to be geographically located either in the United States or China,

respectively for each study. We released the study availability in batches of 20, to both

ensure that the study server would not become overloaded, and to take advantage of the

popularity of newly published tasks. Participant slots were doled out in a “first come

first served” fashion, and submissions would be validated manually. If a submission

did not pass the validation check, it would be rejected, and that “slot” would be made

available to the entire participant pool once again. As part of the study, each participant

was also asked to fill out a short demographic survey, and a questionnaire about their

familiarity with the application, smartphones in general, etc. Each validated participant

was rewarded with $0.50 credited directly into their account.
3Northwestern IRB Project Number STU00093881
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Test Cases

The test cases for this study were designed to mimic those of the previous study. We

recorded a standard interaction with the Pinterest application—start on the home screen

of the application, scroll down to see more content, click on an item to view more details,

scroll down to view related content, click on one of the related pieces of content, navigate

back to the main page and scroll a little more. Each interaction forces subsequent requests

to be issued by the application for more content. The entire recording lasts 30 seconds. We

recorded 5 videos, containing network requests delayed by 0, 250, 500, 750, and 1000ms.

Each of these videos would become one test case in the study. The user would have no

indication how much (if any) delay was being used in any given video, and care was

taken to restrict the content in the video to be inoffensive.

Methodology

The subject would use their own personal computer for the study, and navigate between

the MTurk system and EB hosted survey as necessary. All logs would be kept as a

database on the EB instance, and verification codes would be submitted and kept in the

MTurk management interface. The study would take approximately 7 or 8 minutes to

complete.

The subject would begin the survey by following the link provided to them in the HIT

description, and be asked to read and agree to the provided IRB consent form. The subject

could print out the form, or request a separate copy via email. Since the entire process

was carried out online, the users acceptance was recorded in lieu of a signature. After

accepting the terms, the subject would be asked to answer a short questionnaire about
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their demographic information, as well as ranking their familiarity with the Pinterest

application as well as smartphones in general.

At this point the subject would be provided with instructions on how they would

complete the survey. The language of the instructions was identical for all users with one

exception: whether or not it contained the environmental prompting. Users would be

randomly chosen to be prompted or not, and if so chosen their instruction would contain

the following prompt: “We have modified the application to behave in a more sustainable

way, which means that it may seem a little slower, however this means that the cloud

that is storing Pinterest data is also using less energy when this version is being used as

opposed to the normal version.”

The subject would be instructed to watch each of the videos, and rate how satisfied

they would be using the application on a scale of 1..5, whose intent was described as

“... 1 mean[ing] "I would be completely unsatisfied using this", 5 mean[ing] ’I would be

completely satisfied using this’, and 3 mean[ing] ’I would feel neutral using this’.” The

rating interface, which can be seen in Figure 6.1, would only appear once the video had

been watched all the way through, thus ensuring that a subject could not simply skip

watching any of the videos. The order of the videos would be chosen randomly for each

user, to avoid any potential ordering effects.

Once the subject had completed watching and rating all of the videos, they would be

asked to fill out an exit questionnaire, which provided them with a free-form response to

describe what sort of annoyances they regularly experienced with smartphones.
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Figure 6.1: Rating interface provided to the test subject. The radio buttons and “Rate”
button would only be made visible once the video had completely played

6.6 US study results

This study involved 200 subjects, each of whom provided a rating for every one of the

5 videos they watched. In total, the study produced 1000 ratings, with 485 ratings be-

longing to the green (environmental prompted) population, and 515 belonging to the

nongreen population. The demographics of the study subjects were:

• 62 were enrolled in a College or University, 138 were not.
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Delay [ms] Average [rating] T-Test TOST (t = 0.5)
0 4.02

250 3.81 0.02 0.00
500 3.56 0.00 0.32
750 3.47 0.00 0.70

1000 3.08 0.00 1.00

Figure 6.2: Averages and statistical tests for US study results, delay noticeably affects
satisfaction.

• 120 were male, 80 were female.

• 97 were chosen to be green, 103 were chose to be nongreen.

• 51 were between the ages of 18 to 25, 90 were between 26 and 35, 39 were between

36 and 45, 11 were between 46 and 55, and 9 were 56 or older.

Since we have a fair number of users representing various demographic categories, we

can also explore if factors outside environmental prompting, such as age, gender, or en-

rollment in a University could have any effect on the ratings of users. The satisfaction

averages, as well as statistical comparisons to the ratings of no delay, are presented in

Figure 6.2. As mentioned earlier, we purposefully picked an application where injected

delays would be readily noticeable, and the T-Test results show that this is indeed the

case.

Environmental prompting has no effect on ratings

For each of the analyses of both the MTurk and China studies, we conducted a variety

of tests for the corresponding populations we were comparing. To test the effect of the

environmental prompting on the ratings, we calculate the average and standard devia-

tion, and run both T-Test and TOST tests and present their p-values. However we are also
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interested in trying to see if we can find any trends that are not captured simply by the

average of ratings. To this end we also calculate the skew, kurtosis, and median absolute

deviation of each population.

Median absolute deviation (MAD) is a statistic that is designed to capture the vari-

ability of a dataset, much like the standard deviation, but because it lacks the squared

component of the standard deviation, tends to be more robust to outliers [83]. The MAD

is defined as

MAD([X1, X2, . . . , Xn]) = median(|Xi −median(X)|)

Skew and kurtosis are the third and fourth moments of a population, respectively. The

skewness of a population is a measurement of its asymmetry—when looking at the prob-

ability density function (PDF) of a population, a negative skew indicates that the tail to

the left of the mean is either longer or fatter than that to the right, and a positive skew

indicates the opposite. The kurtosis of a population is a measure of its “tailedness”—how

likely outliers to the mean are. Kurtosis values are defined in relation to a normal distri-

bution, which has a kurtosis of 3. Smaller values indicate that there are fewer outliers,

larger values indicate that there are more outliers.

The result of of our analysis of the effect of environmental prompting are presented in

Figure 6.3. We were expecting to see some effect from the prompting, however we can see

from both the T-Test and TOST results that, at every delay level, there is no statistically

significant difference between the green and nongreen populations! To contextualize the

skew and kurtosis, we present histograms of each population for each delay level in Fig-

ure 6.4. The kurtosis values do not indicate any consistent trends, although the skew

values get closer to 0 (normal-like) for all non-zero delays, which could mean that some
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Nongreen Green
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 4.01 0.85 -0.49 2.49 1.00 4.02 0.87 -0.60 2.64 1.00 0.93 0.00
250 3.82 0.94 -0.67 3.22 1.00 3.84 0.83 -0.32 2.54 1.00 0.88 0.00
500 3.52 1.10 -0.44 2.37 1.00 3.58 0.98 -0.25 2.31 1.00 0.72 0.00
750 3.53 1.28 -0.52 2.14 1.00 3.39 1.00 -0.23 2.29 1.00 0.38 0.02
1000 3.11 1.31 -0.15 1.76 1.00 3.06 1.16 -0.08 2.21 1.00 0.80 0.01

Figure 6.3: Comparing green vs nongreen populations for US study, environmental
prompting has no effect at any delay level.

lower ratings have been “redistributed” to slightly higher ones. Since the average does

not change, this is most likely explained by green-conscious outliers, that is, there are

likely to be a small minority of users in a population that are affected by environmental

prompting, but their presence is not enough to make a difference in the aggregate.

Possible effects of demographic factors

Given the slight change in kurtosis, or “tailedness” of the green vs nongreen populations,

we additionally wanted to ascertain if differences in ratings existed between any of the

demographic groups represented in our study population. The analyses conducted and

presentation of results is identical to that of the previous section.

College / University enrollment The thought behind segmenting the study population

by whether or not the participant is enrolled in a college / university or not is that the

academic environment often exposes persons not only to new technologies, but also new

ideas, especially ideas that may not have entered the mainstream culture yet. The results

of this split are presented in Figures 6.5 and 6.6. Based on the TOST, we can say that for

delays of 0 and 250s there is no difference on the rating between the two groups. For the

remaining delays, the TOST cannot say they behave the same, but the T-Test can also not

tell us that the two groups behave differently.
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Figure 6.4: Distributions of ratings for green and nongreen subjects of US study.
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College/University Not College/University
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 4.02 0.89 -0.72 2.87 1.00 4.01 0.85 -0.45 2.40 1.00 0.99 0.00
250 3.85 0.98 -0.83 3.57 1.00 3.81 0.85 -0.35 2.54 1.00 0.77 0.00
500 3.74 0.97 -0.54 2.25 1.00 3.46 1.06 -0.28 2.13 1.00 0.07 0.08
750 3.68 1.07 -0.58 2.60 1.00 3.37 1.18 -0.30 2.13 1.00 0.07 0.14
1000 3.29 1.32 -0.38 2.02 0.50 2.99 1.19 -0.01 1.97 1.00 0.14 0.14

Figure 6.5: Comparing College / University enrollment vs not for US study, no significant
differences in the average but some distribution shape trends may emerge.

Looking at the shape and moments of the populations, the skew was more positive

and the kurtosis was lower for people not enrolled in a college or university, which is

suggestive of the fact that there may be a small population of college students who are

more sensitive to the performance of mobile applications, but once again this effect is too

small to be felt in the aggregate.

Male vs female Our study population had a (somewhat) surprisingly even split of male

and female participants, so we decided to segment the data on gender and see if there

were any differences between the two. The results are presented in Figures 6.7 and 6.8.

Based on the T-Test and TOST, we can say that the ratings of the two populations behaved

the same for all delays except 1000ms, where the TOST result does not have enough con-

fidence. Looking at the moments, for all but 250ms delay the female population had

a more negative skew, but there was no consistent trend for changes in kurtosis. This

might be indicative of female participants being more sensitive to higher delays, but with

the varying indication of outliers (from the kurtosis) we cannot safely assume this.

Age groups Given the assumption that younger people have a tendency to be more

sensitive to changes in performance4 we wanted to see if we could find any differences

in the age groups of our study population. Based on the demographics, we had enough
4Ask any older person and they will happily tell you young people have no patience these days...
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Figure 6.6: Distributions of ratings for collegiate and non-collegiate subjects of US study.
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Male Female
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.96 0.84 -0.43 2.52 1.00 4.10 0.89 -0.73 2.74 1.00 0.26 0.00
250 3.78 0.89 -0.71 3.53 1.00 3.89 0.89 -0.30 2.20 1.00 0.42 0.00
500 3.46 1.02 -0.34 2.58 1.00 3.69 1.07 -0.46 2.20 1.00 0.13 0.04
750 3.38 1.15 -0.30 2.20 1.00 3.60 1.16 -0.53 2.37 1.00 0.18 0.05
1000 2.97 1.23 -0.04 1.96 1.00 3.26 1.23 -0.23 1.97 1.00 0.10 0.13

Figure 6.7: Comparing the ratings of male vs female subjects for US study, no differences.

participants to compare people in the age ranges of 18 to 25, 26 to 35, and 36 to 45. The

full results are presented in Figures 6.9,6.10,6.11,6.12,6.13, and 6.14. Based on the T-Test

and TOST results, we generally can say there is no difference between the populations,

although we have the least confidence in the comparison of participants 18 to 25 and 36

to 45.

Looking at the moments, there is no consistent change in the kurtosis, but for most

cases the skew is less negative for the older group in the comparison. Combined with the

lower confidence in the sameness of groups 18 to 25 and 36 to 45, this suggests that there

may indeed be a decline sensitivity with age, but perhaps we do not have enough older

users. After all, 36 to 45 is not very old!

6.7 China study results

This study involved 100 subjects, each of whom provided a rating for every one of the

5 videos they watched. In total, the study produced 1000 ratings, with 215 ratings be-

longing to the green (environmental prompted) population, and 285 belonging to the

nongreen population. The demographics of the study users are:

• 91 were enrolled in a College or University, 9 were not.

• 50 were male, 50 were female.
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Figure 6.8: Distributions of ratings for male and female subjects of US study.
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18-25 26-35
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.84 0.92 -0.30 2.19 1.00 4.07 0.87 -0.54 2.41 1.00 0.16 0.04
250 3.80 0.97 -0.86 3.51 1.00 3.81 0.85 -0.38 2.55 1.00 0.97 0.00
500 3.73 1.01 -0.57 3.13 1.00 3.47 1.07 -0.30 2.13 1.00 0.16 0.10
750 3.51 1.18 -0.64 2.51 1.00 3.51 1.16 -0.39 2.16 1.00 0.99 0.01
1000 3.14 1.30 -0.26 1.96 1.00 3.14 1.21 -0.16 2.01 1.00 0.97 0.01

Figure 6.9: No strong differences between subjects of age ranges 18-25 and 26-25 of US
study.

• 43 were chosen to be green, 57 were chose to be nongreen.

• 77 were between the ages of 18 to 25, 22 were between 26 and 35, 0 were between 36

and 45, 1 was between 46 and 55, and 0 were 56 or older.

Given the lower number of users, we are not able to segment based on as many demo-

graphic factors as in the US study. The satisfaction averages, as well as statistical compar-

isons to the ratings of no delay, are presented in Figure 6.15. Comparing these results to

the US study, the average ratings for each delay amount are lower than their correspond-

ing MTurk rating, but the trends remain the same—this study population also clearly

perceives the degradation of performance.

As a reminder to the reader, the reason for conducting an additional analysis of a

Chinese participant population is twofold: to “sanity check” that the lack of effect of

environmental prompting in the Peking University study was correct, thus grounding

our confidence in the results of a crowdsourced study, as well as providing additional

support for the findings of the US study.

Environmental prompting has no effect on ratings

The results for the effect of environmental prompting on ratings are presented in Fig-

ures 6.16 and 6.17. When we compare the green and nongreen populations, we once
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Figure 6.10: Distributions of ratings of 18-25 and 26-35 year old subjects of US study.
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18-25 36-45
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.84 0.92 -0.30 2.19 1.00 4.08 0.76 -0.82 3.81 0.00 0.20 0.08
250 3.80 1.01 -0.86 3.51 1.00 3.85 0.86 -0.18 2.17 1.00 0.83 0.01
500 3.73 1.01 -0.57 3.13 1.00 3.85 0.86 -0.35 2.28 1.00 0.55 0.05
750 3.51 1.18 -0.64 2.51 1.00 3.31 1.09 -0.16 2.35 1.00 0.41 0.11
1000 3.14 1.30 -0.26 1.96 1.00 3.08 1.29 0.07 1.79 1.00 0.83 0.06

Figure 6.11: Comparing subjects of age ranges 18-25 and 36-45 of US study, we are not
able to confidently claim there is no difference in rating.

again find that the T-Test cannot tell us the the two populations behave differently for

any delay setting, although the TOST result falls short of confidence for delays of 250 and

1000. Looking at the moments of the populations, there are no clear trends that emerge

for either the skew or kurtosis. The differences in confidence here could be due to the

smaller number of study participants.

Possible effects of demographic factors

We wanted to repeat the demographic analysis conducted in the MTurk study, however

due to the smaller population size and academic participant pool, we were restricted to

comparing male vs female participants, and the age groups of 18-25 vs 26-35.

Male vs female The results of comparing male and female populations are presented in

Figures 6.18 and 6.19. Based on the T-Test and TOST results, we can say that there is no

difference between the two populations. There are no clear trends in the changes of the

skew or kurtosis, which points to there definitively being no differences in the perception

of and tolerance for performance in this population.

Age groups The results of comparing the age groups of 18-25 and 26-35 are presented in

Figures 6.20 and 6.21. Similarly to the MTurk results, the TOST results do not indicate that
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Figure 6.12: Distributions of ratings of 18-25 and 36-45 year old subjects of US study.
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26-35 36-45
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 4.07 0.87 -0.54 2.41 1.00 4.08 0.76 -0.82 3.81 0.00 0.95 0.00
250 3.81 0.85 -0.38 2.55 1.00 3.85 0.86 -0.18 2.17 1.00 0.83 0.00
500 3.47 1.07 -0.30 2.13 1.00 3.59 1.08 -0.35 2.28 1.00 0.56 0.04
750 3.51 1.16 -0.39 2.16 1.00 3.31 1.09 -0.16 2.35 1.00 0.35 0.09
1000 3.14 1.21 -0.16 2.01 1.00 3.08 1.29 0.07 1.79 1.00 0.78 0.0

Figure 6.13: No strong differences between subjects of age ranges 26-25 and 36-45 of US
study.

the populations behave the same with a high enough confidence, but the T-Test results

also do not indicate that they behave differently. The one interesting exception is the case

of no delay, where the T-Test p value was 0.01, and the 26-35 group had ratings lower by

0.86 rating points.

6.8 Conclusions

In this chapter I described the work we undertook to answer the question: is the rea-

son we did not see any effects of environmental prompting in our earlier PKU study that

there are fundamental cultural differences in the perception of environmental friendliness

among that study demographic. We designed a crowdsourced study in which partici-

pants watch and rate how satisfied they would be using a recorded application at various

delay levels, and conducted it on two geographically distinct populations, one from the

United States and one from China. The purpose of including a Chinese population was

twofold: to provide a sanity check against the earlier PKU study, lending credence to the

crowdsourcing approach, and in turn to strengthen the results from the US population.

In both study populations we found there there were no differences in rating that were

attributable to the environmental prompting. We found that the means of prompted and

unprompted users did not have a statistically significant difference, and we also did not
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Figure 6.14: Distributions of ratings of 26-35 and 36-45 year old subjects of US study.
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Delay [ms] Average [rating] T-Test TOST (t = 0.5)
0 3.62

250 3.21 0.01 0.28
500 3.00 0.00 0.79
750 2.98 0.00 0.82

1000 2.50 0.00 1.00

Figure 6.15: Averages and statistical tests for China study results, delay noticably affects
satisfaction.

Nongreen Green
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.67 1.00 -0.57 2.65 1.00 3.56 1.17 -0.67 2.56 1.00 0.63 0.04
250 3.11 1.00 -0.32 2.53 1.00 3.35 1.10 -0.09 1.95 1.00 0.26 0.12
500 2.98 1.10 -0.04 2.12 1.00 3.02 0.93 0.30 2.64 1.00 0.84 0.02
750 3.04 1.12 0.08 2.36 1.00 2.91 1.07 0.19 2.15 1.00 0.57 0.05
1000 2.37 1.28 0.55 2.12 1.00 2.67 1.25 0.28 2.03 1.00 0.24 0.23

Figure 6.16: Comparing green vs nongreen subjects for China study, environmental
prompting generally has no effect.

find any consistent trends in changes to the higher moments of the datasets when we

looked at skew and kurtosis. In addition, we compared the distribution of ratings for

various demographic splits such as collegiate enrollment, gender, and age group. Based

on the population means, we also did not see any significant differences in rating for these

splits, although we did notice some potential trends in the distribution changes via the

higher moments. This variability strengthens the need for further research into the impact

of prompting or demographics on an individual, and ultimately the need to consider the

delay tolerance envelope of individual users.

Our findings in this chapter discard the hypothesis that differences in cultural context

are responsible for the lack of efficacy of environmental prompting on the delay tolerance

envelope of users. This leaves us with our alternate hypothesis—that users are more

spurred on by a signaling mechanism, which rewards them in some way of their “good”

actions, even if it is only via a comparison to their peer group or surroundings. We explore
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Figure 6.17: Distributions of ratings of green and nongreen subjects of China study.
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Male Female
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.58 1.18 -0.52 2.35 1.00 3.66 0.95 -0.81 3.12 0.00 0.71 0.03
250 3.20 1.13 -0.15 2.33 1.00 3.22 0.97 -0.18 2.09 1.00 0.93 0.01
500 3.00 1.02 0.11 2.51 1.00 3.00 1.04 0.00 2.16 1.00 1.00 0.01
750 3.00 1.10 0.18 2.17 1.00 2.96 1.11 0.08 2.38 1.00 0.86 0.02
1000 2.54 1.22 0.34 2.03 1.00 2.46 1.33 0.49 2.06 1.00 0.76 0.05

Figure 6.18: Comparing male vs female subjects of China study, there is no difference.

the effects of having users compare their actions against those of their surrounding group

via peer pressure mechanisms in the next chapter.
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Figure 6.19: Distributions of ratings for male and female subjects of China study.
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18-25 26-35
Delay Avg STDEV Skew Kurtosis MAD Avg STDEV Skew Kurtosis MAD T-Test TOST

0 3.81 0.95 -0.68 2.97 1.00 2.95 1.22 -0.06 1.87 1.00 0.01 0.92
250 3.31 1.00 -0.26 2.57 1.00 2.82 1.15 0.36 2.08 0.50 0.08 0.49
500 2.97 0.99 0.05 2.30 1.00 3.05 1.15 0.09 2.31 1.00 0.80 0.05
750 3.00 1.09 0.12 2.37 1.00 2.86 1.14 0.27 2.11 1.00 0.63 0.09
1000 2.39 1.22 0.47 2.13 1.00 2.77 1.35 0.19 1.86 1.00 0.25 0.35

Figure 6.20: Comparing subjects of age ranges 18-25 and 26-35 of China study, we cannot
confidently say their ratings are the same, but also not that they are different.
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Figure 6.21: Distributions of ratings of 18-25 and 26-35 year old subjects of China study.
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Chapter 7

What effect does peer pressure have on

the delay tolerance envelope?

In this chapter, I describe work I did in investigating the effects of peer pressure on users

delay tolerance envelope. I describe a user study that was done at Peking University as

well as a study conducted via Amazon Mechanical Turk in the US.

As mentioned in Chapter 6, we established 2 hypotheses for the lack of effect of envi-

ronmental prompting on the delay tolerance envelope, and had discarded the hypothesis

of cultural differences. We then moved on to a lack of signaling as a potential cause—

perhaps just the knowledge of being more environmentally friendly was not enough to

change people’s behavior, but instead what was needed was a way for a user’s goodness

to be in some way either visible to or comparable with the outside world.

Green signaling effects are not unknown in the scientific literature—perhaps the most

notable modern example is that of the Toyota Prius. Sexton and Sexton describe what

they dub conspicuous conservatism, “...in which individuals seek status through displays

of austerity amid growing concern about environmental protection”[112]. In their study
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of consumer spending on automobiles, they find that consumers are willing to spend

more money on the Prius over other cars which have equal or greater “greenness”, and

one finds that the Prius is disproportionately represented, despite its higher cost1. The

authors attribute this to the green halo, or visible status that owning an automobile that

signals its inherent goodness. So we see that, if moral status signaling is present, people

are not only willing to behave differently, but even spend significantly more money to

attain this signal.

Virtue signaling allows a user to broadcast the status of their moral virtue to the out-

side world, but perhaps we can capture an even simpler effect: that of peer pressure. Are

users willing to alter their behavior if they are told that their virtue is significantly different

than that of their surrounding group, even if their virtue is not directly broadcast to any of

those members? Our investigation of the effect of peer pressure consists of two studies:

we augmented the interface of the study conducted in Chapter 5 at Peking University,

and also designed an interactive MTurk study using the same interface elements to run

on a larger population. The idea behind the interface is to contextualize their current de-

lay setting by showing a comparison of them versus the average of the whole population.

The group averages presented are artificially chosen to be either very high or very low

compared to the observed delays, in order to test participants responses to both stimuli.

The contribution of this work is:

• In a user study conducted on 20 participants using 5 applications on a mobile de-

vice in a controlled lab setting, we show that the inclusion of peer pressure causes

subjects to respond to environmental prompting by accepting higher delays.
1The authors quantify the size of this cost difference with the cost of a Corolla hybrid, which has the

closest feature-set to the Prius. They estimate the difference to be between $710 and $1925
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• In this same study, we discard the possibility that subjects are simply “chasing” the

group average by showing that subjects who are told they outperform the group do

not have lower delay tolerances than subjects who had no peer pressure.

• In a user study conducted on 400 participants playing an online game via the Me-

chanical Turk crowdsourcing platform, we show that although environmental pro-

mpting does not produce an effect in this scenario, there is still a distinguishable

difference on the delay settings of users who were told they are performing better

and worse than the group average.

7.1 Peer Pressure interface

In the previous study of Chapter 3 we presented users with an interface that displayed

to them one piece of information: their current delay setting. In order to leverage the

effects of peer pressure, we would need to be able to show them a second datapoint, the

collective behavior of their peer group, but perhaps more importantly we would need to

allow the two pieces of data to be instantly and easily compared by the user. To this end,

we created a simple interface that would simultaneously show to the user their control-

lable delay setting, as well as the simulated average of the study population. An example

configuration is shown in Figure 7.1.

We chose 35% and 85% to be the low and high values for the group delay, respectively,

as those were values that were outside of the normal averages, but still believable for a

user. We also introduced a random nudge factor, such that the shown average could vary

by 5% above or below the chosen average, which would be applied randomly over time to

give the impression that the group average was changing, and make the user think that
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Figure 7.1: The peer pressure interface presented to users. The red bar indicates the users
current delay, while the green bar indicates the average of the group. This allows the
users to anonymously compare themselves to the group at large.

it was indeed tracking a live population. The group average was displayed as a green

“progress bar” in the overlay.

The user setting was displayed as a red bar floating on top of the group average bar,

so that the user could see at all times both where their delay was and how it compared

to the group. For the PKU study, the user would control their delay settings via the same

mechanism described earlier in Chapter 3, using the volume keys. For the new MTurk

study, the user was given keyboard controls that will explained in detail in Section 7.4.

7.2 PKU study

The purpose of this study was twofold—one, to establish if a peer pressuring element

would cause people to care more about their environmental friendliness, and two, to test

if users would be susceptible to groupthink mentality. What we mean by this is, if seeing

a high group average increased users’ envelope up, would seeing lower group averages

cause a drop in the user envelope? The applications chosen, subject recruitment, com-

pensation, methodology, and testbed of this study is identical to the earlier PKU study

of Chapter 3, with the only and notable exception of the peer pressuring interface replac-

ing the notification bar interface described in the same Chapter. Each subject would be
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randomly placed into the leading (85% group average), or trailing (35% group average)

category when they arrived.

Subjects

Peking University does not have a formalized IRB process, however we designed the

study in a very similar way to the original US study, and made sure to take the same

steps to preserve subject anonymity and not collect any personally identifying informa-

tion. We advertised to the broader Peking University population via flyers posted in

computer labs and University hallways / bulletin board, and email advertisements. Our

selection criteria was that the subject had to be familiar with mobile phones, and have

familiarity with at least some of the applications that they would use during the study.

We selected the first 20 participants who responded and qualified. As part of the study,

each subject would also fill out entrance and exit questionnaires, which included demo-

graphic information. At the end of the study, each participant was rewarded with a gift

card worth 35 Chinese Yuan (approximately 5 USD). The demographics are enumerated

in Figure 7.2.

7.3 PKU results

This study involved 20 subjects, and produced full results for each of the participants.

For each subject, and each application, we collected the times of the events for each task

(begin, 2 minute prompt, 6 minute prompt, end), the time and delay level of any time the

user changed the application, which group delay population they had been assigned to,

as well as properties about each network request the was sent by the study applications.
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Users

Age 18-25 16
25-35 4

Gender Male 4
Female 16

Area of Study

Computer Science 3
Science / Engineering 4

Medicine 3
Law / Policy 5

Other 5

Length of smartphone usage

0-1 Months 0
1-6 Months 0

6 Months - 1 Year 0
1-2 Years 0
2+ Years 20

Smartphone Type Owned Android 10
iOS 10

Carrier China Mobile 12
China Unicom 8

Figure 7.2: User study demographics.

In total, the study produced 2410 delay setting changes, which we use as the basis for

our analysis. We use the same approaches from the previous study for evaluating each

subjects delay tolerance envelope: area under the curve, maximum for interval, and last

level.

Area under the curve

We had a total of 20 study subjects, each of which used all 5 of the study applications. Half

of the subjects were placed in the “green” population, and the other half were placed in

the “nongreen” population, giving us the opportunity to collect 50 average values for

each population. The averages and standard deviations for all users are presented in

Figure 7.3.
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Considered Reconsidered Total
Avg StdDev Avg StdDev Avg StdDev

Nongreen 630.24 211.63 794.64 226.19 710.86 199.43
Green 696.12 106.44 862.85 132.14 778.82 110.78

Figure 7.3: Average value and standard deviation of the user delay envelope, as calculated
via the Area Under the Curve Method.

T-Test TOST
thresh = 50 thresh = 100

Considered 0.05 0.68 0.16
Reconsidered 0.07 0.69 0.20

Total 0.04 0.71 0.16

Figure 7.4: P-value results of Statistical tests of whether the means of envelope for green
and nongreen populations behave the same. Statistically significant results (p < 0.05) are
in bold.

Comparing these results to the earlier study, we immediately see two effects emerge:

1. The difference in average between green and nongreen groups is fairly obvious,

with the green population envelope consistently being 60ms larger than the non-

green envelope.

2. The standard deviation of the green envelope is greatly reduced, consistently being

half as large as the standard deviation of the nongreen envelope.

We further verify these results by running T-Test and TOST analyses on the population

datasets, results are shown in Figure 7.4. With the incorporation of the peer pressuring el-

ement, we can now see a clear statistical difference between the green and nongreen pop-

ulations. It is also important to note that this difference is visible regardless of whether

the group average is higher or lower than the subjects setting!

Due to the lower number of users in this study, we did not have enough data to further

decompose the analysis of individual applications, and thus this is not presented in this



163

Threshold [s] T-Test TOST (thresh = 50) TOST (thresh = 100)
0 0.35 0.42 0.09
5 0.35 0.12 0.00

10 0.30 0.15 0.00
20 0.14 0.32 0.01
30 0.09 0.50 0.05
60 0.13 0.49 0.06
120 0.25 0.45 0.08

Figure 7.5: Comparing green vs nongreen populations using the “max by interval
method, differences are no longer clear.

Chapter.

Max by interval

When we compare the envelopes of the green and nongreen populations with the max-

imum by interval method, we no longer see clear statistical differences, at any of the in-

tervals tested. The results of the analysis are shown in Figure 7.5. The analysis does not

convincingly suggest that the populations behave the same, either, so it could simply be

the case that there are not enough data points from this study. If we look at how often

users changed their delay setting, we see that in the previous study there were an average

of 111.14 changes per user whereas for this study there were an average of 120.5 changes

per user, so the peer pressuring element could have caused the stability of the interval

method to decrease, or the method could not be an appropriate way of calculating the

envelope for any user. Further research and analysis is needed to determine the efficacy

of this method.



164

Average [ms] Std Dev
Nongreen 825.00 224.77

Green 898.00 119.57
T-Test TOST (t = 50) TOST (t = 100)
0.05 0.73 0.23

Figure 7.6: Average delay setting, Standard Deviation, and statistical tests for the Last
Level Analysis.

Last level

The results of analyzing the envelope using the last level method further support there

being a difference between the green and nongreen populations, and are enumerated in

Figure 7.6. We also see the same reduction in standard deviation, which adds confidence

to both the utility of the area under the curve method, as well as our interpretation of the

results of the results.

Leading and trailing

Study participants were randomly placed into either the leading or trailing categories, sig-

nifying that their presented group average would be at the high or low level, respectively.

We have already seen that the inclusion of even such a simple peer pressuring mechanism

induced the environmental prompting to be more effective, but we also wanted to verify

this by showing that participants were not simply “chasing the group”, by comparing the

results of users in each group to the averages from the initial study.

The averages of the two groups are presented in Figure 7.7. We can clearly see the

differences between the two groups, and we verify these differences with T-Tests—the

p-values for the Considered, Reconsidered, and Total periods are 0.00, 0.01, and 0.01 re-

spectively.
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Leading Considered Reconsidered Total
Avg StdDev Avg StdDev Avg StdDev

Nongreen 546.86 203.91 756.72 234.51 660.22 199.72
Green 647.55 98.48 797.29 144.28 722.59 111.29

Trailing Considered Reconsidered Total
Avg StdDev Avg StdDev Avg StdDev

Nongreen 695.62 198.60 832.56 210.83 761.50 185.81
Green 744.70 90.69 928.40 74.23 835.05 76.39

Figure 7.7: Average value and standard deviation of the user delay envelope, as calculated
via the Area Under the Curve Method, for trailing and leading

T-Test p-values Considered Reconsidered Total
Nongreen 0.02 0.00 0.00

Green 0.01 0.00 0.00

Figure 7.8: Subjects in the trailing group had their averages increased.

Following the group? In order to figure out what effect the level of the group delay

had on study participants, we compared the averages of each group with the averages

of the 70 participants from the earlier study, which we consider to be the baseline. As a

reminder to the reader, those earlier participants went through the same tasks on the same

applications, with the same ability to control their delay, they were simply not given any

kind of peer pressuring interface.

The comparison between subjects in the trailing group and the baseline is presented

in Figure 7.8. Based on the T-Test and the averages, it is clear that presenting subjects

with a high group average has increased up their delay tolerance envelope. Turning to

the leading group, we enumerate the comparison between the group and the baseline in

Figure 7.9. Looking at the results of the statistical tests and the averages, we can say that

having a low group average did not lower the delay tolerance envelope.
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T-Test p-values Considered Reconsidered Total
Nongreen 0.14 0.60 0.67

Green 0.22 0.97 0.56
TOST p-values (t = 50) Considered Reconsidered Total

Nongreen 0.42 0.19 0.11
Green 0.32 0.08 0.13

TOST p-values (t = 100) Considered Reconsidered Total
Nongreen 0.03 0.01 0.00

Green 0.02 0.00 0.00

Figure 7.9: Subjects in the leading group did not have their averages decreased

7.4 MTurk study

The results of the peer pressuring study of the previous section were certainly promising,

but because they were based on a participant pool of 20 users we felt we needed to gather

more evidence for our claims. Thus we we once again turned to the readily available

participant pool of Amazon Mechanical Turk. However we were immediately faced with

a challenge—how can we construct a crowdsourced task that will be interactive enough

and allow us to include a subject-controllable delay? Since we could not present users

with the familiar phone interface that they could interact with in any reasonable way,

we instead chose to create a game of snake with the same peer pressuring interface, and

controllable delay settings to test on participants.

Snake game

To build our user study, we used an open source implementation[47] of the classic game of

snake, which was released under an MIT license and thus allowed us to modify and use it

as we saw fit. We used the same Python Flask framework to create the study application,

and added the same peer pressuring interface from the PKU study. The main portion



167

Figure 7.10: The interface visible to the subject during the study, the signaling bar is visible
above the game of snake, with controls visible as well.

of the study is shown in Figure 7.10. Since a subject would not have the volume key

interface of the PKU study available to them, we added controls for their delay setting

via two methods: there were buttons available to the right of the displayed bar, as well

as keyboard shortcuts, X for increasing the delay and Z for decreasing the delay. The

maximum delay for the game was 250ms, although the interface did not indicate what

the delay setting was.

Visibility of the interface

In addition to having two modes for the group delay average, we also wanted to test two

variants of displaying the peer pressuring interface. We saw in the original PKU study

that reminding a subject of their ability to control the delay (the “Reconsidered” period)

increased their delay tolerance envelope, and we additionally did not want to aggravate

or confuse the user by giving them 2 simultaneous tasks - playing the game and control-
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ling the delay. We call the two variants the “visible” one, wherein the peer pressuring

interface is visible over the whole duration of the study; and the “hidden” variant, where

the peer pressuring interface (and associated controls) were only visible between games.

In the hidden variant, when a subject was actively playing a game of snake, the interface

bar would be made invisible on the webpage, and would only reappear in the period of

time between a snake death and subsequent new game start.

Subjects

Our study was IRB approved2, allowing us to recruit users from the entire US and Chinese

crowdsourced participant pools. We advertised the study to participants via the provided

framework task discovery mechanism, which allowed potential participants to pick tasks

based on description, duration, and compensation. Our selection criteria for each study

was that participants had to be geographically located in the United States. We released

the study availability in batches of 20, to both ensure that the study server would not

become overloaded, and to take advantage of the popularity of newly published tasks.

Participant slots were doled out in a “first come first served” fashion, and submissions

would be validated manually. If a submission did not pass the validation check, it would

be rejected, and that “slot” would be made available to the entire participant pool once

again. As part of the study, each participant was also asked to fill out a short demographic

survey, and a questionnaire about their familiarity with the game of snake, how long they

had been using a smartphone, etc. Each validated participant was rewarded with $0.50

credited directly into their account.
2Northwestern IRB Project Number STU00093881
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Methodology

The subject would use their own personal computer for the study, and navigate between

the MTurk system and EB hosted survey as necessary. All logs would be kept as a

database on the EB instance, and verification codes would be submitted and kept in the

MTurk management interface. The study would take approximately 9 or 10 minutes to

complete.

The subject would begin the survey by following the link provided to them in the

HIT description, and be asked to read and agree to the provided IRB consent form. The

subject could print out the form, or request a separate copy via email. Since the entire

process was carried out online, the users acceptance was recorded in lieu of a signature.

After accepting the terms, the subject would be asked to answer a short questionnaire

about their demographic information, as well as ranking their familiarity with the game

of Snake as well as smartphones in general.

At this point the subject would be provided with instructions on how they would

complete the survey. The language of the instructions was identical for all users with

one exception: whether or not it contained the environmental prompting. Users would

be randomly chosen to be prompted or not, and if so chosen their instruction would

contain the following prompt: “We ask that you set the delay as high as you can, while

still allowing you to play the game comfortably. Also keep in mind, that as you increase

delay, the server this survey is running on will use less energy. In this way, you can reduce

your environmental impact by increasing the delay. As you set the delay higher, the snake

will take longer to respond to your key presses.” If chose to be nongreen, their prompt

would be: “We ask that you set the delay as high as you can, while allowing you to play

the game comfortably. As you set the delay higher, the snake will take longer to respond
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to your key presses.”

The subject would then begin playing the game. They would be given 3 practice

rounds, where no delay was added and no peer pressuring bar was visible. This would

give the subject time to familiarize themself with the controls and with the speed of game-

play. Once the 3 practice rounds were over, the peer pressuring interface would appear,

as well as a reminder of the controls available. The participant would then play the game

for 5 minutes, at which point a button would be made visible for the subject to press to

conclude the study. Upon conclusion, the subject would be taken to an exit questionnaire,

which asked how environmentally conscious the subject generally considered themselves

to be, and, if they had had the visible variant of the interface, asked if they had felt an-

noyed by its constant presence or found it difficult to use.

7.5 MTurk results

The study involved 400 subjects, 399 of whom we were able to collect meaningful data

from, each of whom had played the game for at least 5 minutes. In total there were

4407 games played, with 2109 games having been played by green participants and 2298

games having been played by nongreen participants, and 10,718 total delay changes. The

demographics of the study subjects were:

• 98 were enrolled in a College or University, 138 were not.

• 196 were male, 203 were female.

• 190 were chosen to be green, 209 were chose to be nongreen.
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Green Interface Group Count
No Visible Low 55
No Visible High 60
No Hidden Low 52
No Hidden Hidden 42
Yes Visible Low 62
Yes Visible High 43
Yes Hidden Low 38
Yes Hidden High 47

Figure 7.11: Division of number of study subjects among the groups.

• 91 were between the ages of 18 to 25, 158 were between 26 and 35, 91 were between

36 and 45, 41 were between 46 and 55, and 18 were 56 or older.

The counts of users as divided up by our 3 random variables (green, group, and interface)

are presented in Figure 7.11. All of the numerical results presented are in terms of per-

centage of the maximum delay, for example 0% would indicate 0ms of delay, 50% would

indicate 125ms, and 100% would indicate 250ms.

Area under the curve

The average values and standard deviations for the envelope of subjects are presented

in Figure 7.12. Surprisingly, we find that once again there is no difference between the

green and nongreen groups, despite the introduction of a peer pressuring element! We

do find that the trailing group had a higher average delay setting than the leading group.

Our interpretation of these results is that the lack of a mobile interface has put users back

in the mindset of their expectations of performance with a non-mobile device, namely,

the personal computer they complete the user study on. However, given that we do still

see differences between the leading and trailing groups, we wanted to investigate this

difference further.
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Nongreen Green Leading Trailing Visible Hidden
Avg 57.14 58.59 55.71 60.12 58.43 57.34

StdDev 17.87 19.20 17.10 19.71 19.43 17.75
T-Test 0.44 0.02 0.56

TOST (t = 5) 0.03 0.38 0.02

Figure 7.12: Average value and standard deviation of the user delay envelope, as calcu-
lated via the Area Under the Curve Method.

Leading Trailing
Nongreen Green Nongreen Green

Avg 54.45 57.04 59.93 60.34
StdDev 14.90 19.06 20.14 19.20
T-Test 0.28 0.95

TOST (t = 5) 0.16 0.06
Nongreen Green

Low High Low High
Avg 54.45 59.93 57.04 60.34

StdDev 14.90 20.14 19.06 19.20
T-Test 0.03 0.24

TOST (t = 5) 0.27 0.02

Figure 7.13: Average value and statistical comparisons when splitting along green/non-
green and leading/trailing reveals no hidden effects.

In order to make sure that we were not missing out any effects being hidden by com-

bining too many groups together, we also decompose the data amongst the 4 groups

created by splitting on high/low and green/nongreen, and present the results in Fig-

ure 7.13. At this decomposition level we find no clear trends of differences between any

of the groups, which suggests that we may be seeing two effects—environmental prompt-

ing and peer pressuring—colliding in this study, and yielding little effect in total.

Maximum by interval and last Level

The results of analyzing the data via the maximum by interval and last level methods

largely support the area under the curve findings, and are presented in Figures 7.14
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Interval Test Green vs Nongreen High vs Low Visible vs Hidden

0
T-Test 0.16 0.02 0.67
TOST 0.37 0.72 0.10

5
T-Test 0.61 0.00 0.10
TOST 0.04 0.84 0.27

10
T-Test 0.87 0.01 0.17
TOST 0.02 0.65 0.20

20
T-Test 0.73 0.00 0.21
TOST 0.04 0.80 0.19

30
T-Test 0.26 0.00 0.69
TOST 0.20 0.89 0.06

60
T-Test 0.07 0.00 0.66
TOST 0.49 0.87 0.09

120
T-Test 0.13 0.01 0.71
TOST 0.41 0.77 0.09

Figure 7.14: No clear trends emerge for any interval

Nongreen Green Leading Trailing Visible Hidden
Avg 57.43 56.69 54.47 59.90 56.46 57.58

StdDev 30.44 29.99 28.74 31.52 30.11 30.32
T-Test 0.81 0.07 0.72

TOST (t = 5) 0.08 0.56 0.10

Figure 7.15: Average value and standard deviation of the user delay envelope, as calcu-
lated via the Area Under the Curve Method.

and 7.15. The last level method only gives us 93% confidence that the leading and trailing

groups behave the same, but this remains close to our results so far.

Environmentally conscious users do not set higher delays

In addition to asking the usual set of demographic questions, we also asked the subjects

of this study an additional question—to rank on a scale of 1 to 5 how environmentally

conscious they deemed themselves to be “with 1 meaning not environmentally conscious

and 5 meaning very environmentally conscious”. In Figure 7.16 I enumerate the average

delays of all users split by the self ranking, as well as the delays for both the green and
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Env conscious? 1 2 3 4 5
Count 29 48 120 144 58

Avg delay 57.66 63.35 61.26 59.55 58.38
Green delay 52.68 62.89 60.40 58.32 55.80

Nongreen delay 56.35 59.77 58.58 55.46 56.47

Figure 7.16: Average delay setting does not increase with self-reported environmental
consciousness.

nongreen population. We would expect the average delay setting for more environmen-

tally conscious users to increase in a somewhat linear fashion, but instead see that it peaks

at a ranking of 2.

7.6 Conclusions

The user studies of this chapter provide us with yet more surprising results—a small

user study of 20 participants demonstrates strong and clear evidence for the efficacy of

the peer pressuring mechanism, but a much larger study of 400 users comes up with no

difference between the subjects that were environmentally prompted and those that were

not. As mentioned in Section 7.5, it is our belief that the lack of a mobile interface are

likely what caused the negative results of the MTurk study. However, the strong results

of the second portion of the Peking University study motivates further study of the peer

pressuring effect, with larger scale and mobile-based setups.
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Chapter 8

How can we best communicate with the

user?

In this chapter I discuss potential ideas for interfaces that allow meaningful environmen-

tal information to be communicated to the user, dynamic envelope information to be gath-

ered from the user, and for virtue signaling to be present in a user’s interactions. A few

rudimentary interfaces have been used already in the studies that have been undertaken

over the course of my doctoral work, and I will discuss these as well, along with their

strengths and weaknesses.

8.1 Existing interfaces

Two basic peer pressuring interfaces have been used in our user studies thus far - the

simple presentation of current delay settings used in the initial portion of the PKU study,

and the group delay comparison used in the latter half of the PKU study as well as the

subsequent Mechanical Turk study. These interfaces have been good for evaluating the
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initial opportunities of both the size of the user delay tolerance envelope and reaction

to peer pressuring, however they have many shortcomings in the larger context of this

thesis work.

For one thing, there is no relaying of dynamic environmental friendliness information

back to the end user, one of my hopes was to able to provide dynamic information back

to the user as to both how green they were currently being, as well as how their actions

over time were contributing to the datacenter. The current interfaces use the delay setting

as a sort of instantaneous measure of greenness, but this falls short of my ultimate vision.

Additionally, this interface does not actually signal any information about the user to the

outside world, it simply purports to to study the psychological effects of this on the user.

We have also used a rudimentary mechanism for deriving user satisfaction in our

various study—self reported satisfaction. In cases where we sought to measure it, we

would prompt the user to rate their satisfaction on a Likert scale, assessing how they felt

at that moment. One of the tradeoffs of such an approach is that we are limited in how

many assessments we can get over time—the more often a user is prompted to rank their

satisfaction, the more distracted they become from the task at hand, and the more any

dissatisfaction is likely to be due to the prompting itself rather than from any effects that

are being measured.

8.2 Gathering information from users

One avenue of work on the interface that could prove highly valuable would be exploring

new mechanisms for assessing the satisfaction of the end user. Related work [73, 101, 116,

108] has shown that by using the signals from biological feedback sensors, user annoy-
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ance events can be predicted and monitored. By using such sensors, we might be able to

directly measure the satisfaction of a user as they are using a mobile application, and be

able to adjust their delay settings accordingly. Work has been done by Peter Dinda, my

adviser, in creating a mobile bio-sensor platform that could be used to just such an end.

8.3 Group dynamics

We have seen the effects of placing users in the trailing group of user tests, that is, putting

them in a situation where they perceive their performance to be lesser than that of their

surrounding group. It is important to note that at no time during any study were subjects

told that they were explicitly being compared to the group, or that if they consistently

did worse than the group that their outcome would be negative in any way, and yet we

still saw that the effects came through. This should be hardly surprising, as the compet-

itive nature of humans is well known, and there are in fact entire workshops devoted to

studying such gamification effects [24].

One interesting question that I would like to answer is this: what is the most optimal

group unit for effecting behavioral changes? By group unit I mean here what boundaries

(if any) should be imposed upon the group that a users greenness is being compared to?

Some initial proposals for testing include:

• Based on social network connections: we could “piggy-back” off the groups that

users already create on a social networking site, such as Facebook, or create a social

networking feature within the signaling interface. In either case, the idea is that so-

cial connections already contain inherent meaning, and a user is likely to care more

about how they compare with their social connections, thus potentially boosting the
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effects. Fitbit has introduced group-based activity tracking and leaderboards, and

has produced positive results [137, 77].

• Based on geographic proximity: since the interface would be running on a mobile

device that is already capable of geolocation, the comparison could be made by

grouping all users within a certain geographic radius. This could mitigate potential

problems such as time-zone mismatches that could exist in the social network op-

tion1. This approach could also utilize some of the outward signaling mechanisms

of the following section.

• Based on national/regional groups: One of the potential downfalls of the earlier

two methods is that they may produce groups that are simply too small to provide

meaningful comparisons. By comparing a user against other national or regional

(for example, state) users, we are assured of having a large enough population pool,

and also provide a comparison against users who have a good probability of being

in similar situations and environments.

8.4 Outward signaling

The methods discussed thus far in this Chapter provide a means of comparing a users’

greenness against people who are participating in the system/interface, but what if we

could also include signals that work in general? For example, part of the biosensor plat-

form mentioned earlier is an LED that is affixed to the platform in such a way as to be

visible to anyone. Introducing a method where it would be immediately obvious to on-
1If your friend is halfway across the world, why would you care how green they are being? They are

probably asleep!
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lookers how green a person was being might also influence their behavior. Of course, the

tradeoff to avoid there would be not making the externally facing signal so obnoxious as

to dissuade the user from wearing it. Some initial thoughts for signals to produce would

be:

• Brightness of light: a more brightly lit LED would indicate a higher greenness. This

would avoid any “punishing” effects, as lower green scores would simply not pick

up the attention of others. Depending on the range of values, it may be difficult to

meaningfully compare between people who have similar greenness.

• Pulse pattern: better scores could produce slow, soothing pulsing patterns, whereas

worse scores could produce more strobing effects. The potential downside would

be having the negative signal be too annoying or too distracting. We also do not

want to explicitly punish users too much, if at all, for fear of user abandonment.

• Activation of signal: should the signal be visible at all times? Or should there be

“activation” events, such as when a person begins to move, when there are more

likely to be other people around who would see this signal?
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Chapter 9

Related work

In order to put my thesis into context, I now give an overview of related work. I begin

by giving an overview of datacenter growth and energy consumption. Next, I discuss

various methods of attaining efficient datacenters. I then discuss datacenter workload

characteristics. Following this, I motivate using user satisfaction with previous works.

Finally, I discuss existing attempts at informing users of their impacts on sustainability,

and discuss related work in studying the effect of delays on user satisfaction.

9.1 Datacenters

As mentioned in Section 1, as application complexity and user-base population have in-

creased, so too have the datacenters backing those applications grown. By late 2011,

Google’s datacenter operation was drawing 260 megawatts of continuous power, with

each individual Google search estimated to “cost” 0.3 watt-hours of energy [49], and the

power consumption of their combined datacenters jumped from 260MW in 2011 to an

estimated 3.2GW in 2015 [36, 72]. In 2009, a single Amazon datacenter was operating at

15 megawatts [57].
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In 2007, the Environmental Protection Agency estimated that datacenters had con-

sumed 61 terawatt-hours of energy in the previous year, taking up 1.5% of the total U.S.

consumption that year. They also noted that datacenters were the fastest growing con-

sumers of electricity, and predicted that by 2011 an additional 10 power plants would

have to be built to be able to satisfy the growing demand of datacenter energy consump-

tion [127].

One of the ever-rising concerns associated with datacenters is that they are not energy

efficient. Research studies going as far back as the 90s (e.g. [96]), as well as more mod-

ern studies such as [11] estimate that most datacenters are only 10–30% utilized. More

recent surveys from the NRDC claim that utilization is only at 12–18% [28]. Some have

even claimed that datacenters, especially as they continue to grow, are environmentally

hazardous and unsustainable [48].

More recent work estimates that cloud datacenters consume more than 2.4% of global

electricity [93]. Perhaps more worryingly, this consumption is expected to grow at a rate

of 15-20% annually [92]. In terms of the environmental impact, in 2011 it was estimated

that datacenters produced CO2 emissions equal to 2% of total global CO2 emissions [17].

A further report from 2016 estimates that datacenter energy consumption jumped from

1.4% to 1.8% from 2010 to 2014 [113].

9.2 Datacenter sustainability

As both power and user demands on datacenters have risen, much work has been done

to make datacenter operations more energy efficient. Generally, the work is split into two

high-level considerations: attempting to keep the lowest number of servers powered on
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at any given time, and attempting to optimize the computational efficiency of servers that

are currently running.

The traditional approach to datacenter provisioning (which is still widely used in the

industry) is to estimate the peak request rate, and to keep on the amount of servers on [22,

62, 129], often overestimating the peak request rate by a factor of 2 [74].

In the server provisioning vein, AutoScale [44] is arguably the state-of-the-art. In con-

trast to prior work, which attempts to power servers up to provide enough capacity to

satisfy an unknown future workload, AutoScale instead conservatively powers servers

down once there is “slack” in the system, and powering servers up as incoming requests

dictate.

Other examples of adapting, in an energy efficient manner, to the offered workload

include dynamic voltage and frequency scaling (DVFS) for servers [31], coordinated de-

cisions across the data center [97, 43], and consolidation within the datacenter [128].

Recently the notion of trying to make datacenters more aware of both the availability

of green energy sources [30] as well as datacenter applications that are aware of their

carbon footprint [29] have been explored by the group of Stewart et al.

With the recent craze of applying various Deep Learning techniques to every field,

there has of course also been work in applying machine learning methods to saving en-

ergy at the datacenter. Google has applied their recently acquired DeepMind division

to predict temperatures in their datacenters and adaptively adjust their cooling systems,

reducing cooling costs by up to 40% [25]. Work done by Memik, Zheng, et al at North-

western University has achieved reductions in power consumption of 5% in the average,

and 17% in the optimal case by using machine learning methods to inform task placement

on nodes.
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9.3 Datacenter traffic

Work done in the 90’s to characterize internet traffic characteristics (such as [9, 5]) and to

create traffic generators such as SURGE [10] focused on the prevalent traffic on the inter-

net of the time—requests for single websites and their linked (or local) contents. A survey

of historical datacenter traces can be found in the AutoScale paper [44], and illustrates the

diversity of workloads that datacenters are faced with, and must be ready to deal with.

More recent analyses of datacenter traffic characteristics, such as word by Ersoz et

al [40], which used simulated internet auction site traffic created using RUBiS [20], have

found statistical characteristics that arise from simulated single-usage on a datacenter.

Various benchmarks have been designed that that create application workloads on data-

centers running internet services [135] or search engines [45].

Benson et al presented the bursty nature of datacenter traffic by examining a num-

ber of private and educational clouds [12]. However I am not aware of any work that

has attempted to either characterize or generate traffic created by mobile devices such as

smartphone.

9.4 Informing users of energy

The common thread of these sustainability approaches has been that they are all focused

on reducing energy exclusively at the datacenter side, and must simply cope with any

choices made by end users that affect offered workloads. Most attempts at bringing the

user into energy efficient choices have been focused in smart home and heating/cool-

ing scenarios, with initial surveys suggesting that once users are made aware of their

energy repercussions, they are willing to play a more active role in reducing their energy
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footprint [50], especially when exposed to interfaces that offer them feedback and person-

alization [1]. However most systems today, such as the Nest thermostat [98] still attempt

to make the decisions for the user, instead of asking the user how satisfied they are.

9.5 Considering user satisfaction

Datacenter systems are concerned with meeting a contractually agreed upon SLA, which

is an analogue for service times that satisfy end user satisfaction. However this user

satisfaction is never directly asked, and instead is inferred from the success of a service, as

compared to competitors. Work done in the Empathic Systems Project aims to empower

the user by including their satisfaction feedback as a signal for resource allocation and

provisioning. The overall goals of the project are outlined in [34], and many works from

the project have shown that including the user satisfaction is beneficial [123, 117].

Lately there has been a recognition of datacenter-based metrics such a SLA or quality

of service (QOS) approaches may not capture enough information about the factors that

influence user-perceived satisfaction, that is, how the performance of the service or appli-

cation is experienced by individual users. One of the responses has been to attempt to

quantify the quality of experience, or QoE, which is simply the overall acceptability of an

application or service as perceived subjectively by an end-user [35]. Much of the work

done in this area has been focused on finding methods for judging QoE in video stream-

ing services [111, 134, 100].

Much like the related work of the previous section, recent work such as that by Shorfu-

zzaman [114] still does not attempt to ask end-users how satisfied they are, but rather

consider “User satisfaction rate [to be] the percentage of users whose QoS requirements
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are met.” As I have shown in my doctoral work, user satisfaction under the same condi-

tions is highly variable, and approaches such as these miss out on the opportunity to tap

into more tolerant users.

9.6 Traffic shaping

Traffic shaping has had its greatest success in computer networks. It originated in ATM

networks [70, 104] and then expanded widely [46, 39], for example into DiffServe [14], and

today is widely deployed. The user-centric traffic shaping concept is named by analogy,

but an important distinction is that we focus on shaping the users’ offered workload to the

cloud, as well as shaping the users’ perception of the performance that workload receives.

Google uses traffic shaping inside of their datacenters, and has patented methods by

which user requests can be redirected based on application layer information as to the

potential tasks and sub-tasks of a request [19], as well as by selectively adding delays if

responding to the request is deemed to not be immediately critical and current resource

contention is high [121].

Akhshabi et al have shown that by enabling traffic shaping on servers which serve

streaming videos, the amount of “oscillation” of quality of streams caused by competing

clients can be drastically reduced [4]. Getting close to the end-user side of things, traffic

shaping methods for increased HTTP stream have been proposed by Villa et al [130] on

a geographically regional grouping, and by Houdaille and Gouache [63] at the level of

home gateways.

As far as I am aware, there have been no attempts to shape the traffic coming directly

from end-users for the purpose of energy cost reduction.
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9.7 Satisfaction and delay

A question that has not been researched widely is this: what does it take for a mobile

application user to abandon an application? Based on information gathered from news

reports, Facebook recently began introducing a variety of bugs and interface issues, caus-

ing lags and crashes on their native Android Application [38]. According to the article,

no matter how unstable the app was made, the user loss rate was effectively zero.1 Of

course, it is important to note that Facebook is an enormously successful and popular so-

cial network, and operates with little competition so some users may feel like they have

no option but to stay with the application despite any issues, but this still presents some

indication that mobile application users may not be as sensitive to delay as previously

thought.

9.8 Green interfaces

There has been a lot of work done in the HCI community exploring methods of effecting

behavioral changes in the real of environmental activities. Work by Dillahunt et al has

shown that feedback can be a powerful motivator of behavioral change – they created

a survey in which a users actions affected a “virtual polar bear” [32]. They found that

seeing an immediate effect on this virtual animal increased environmentally responsible

behavior, especially when users became emotionally attached. Similar behaviors were

found based around an early 90’s children’s toy, dubbed the “Tamagotchi Effect” [61],

wherein emotional attachments to a virtual being caused changes in user behavior.
1I reached out to the author of the article for more information and data, but was unable to gain any

more insights.
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Work by Froehlich and his group used this study to their advantage, and they created

the MyExperience interface [41] which gave users feedback with interactive backgrounds

such as a blossoming apple tree or a polar ice cap that grew and fostered more polar bears

and other arctic critters.

Froehlich’s group used the MyExperience interface to conduct a couple of studies,

including Ubigreen [42], wherein users were encouraged to take green methods of trans-

portation such a public transit, biking, or walking; and Ubifit [26], where users were en-

couraged to partake in a more active lifestyle, doing cardiovascular, resistance, or other

training. In both studies, users found that the reward of seeing their effects in the inter-

face motivated them to increase the behaviors that led to positive feedback.

As far as I am aware, there has not been any work done in attempting to inform users

of the effects of their behavior on the datacenter, which gives me an opportunity for tap-

ping into the existing desire to be more environmentally friendly to be able to change a

user’s traffic.
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Chapter 10

Conclusions

In cloud-backed mobile applications, there are always tradeoffs between delivering con-

tent to the end-user. Based on studies by large cloud providers such as Google and Ama-

zon, the sensitivity to latency of the end-user has been estimated as very high, which has

meant that most, if not all, work on reducing the energy footprint of cloud datacenters has

been on the datacenter side. I claim that in the mobile space, this sensitivity is actually

much lower, and can in fact be further mitigated by contextualizing users in an environ-

mental frame of mind. Furthermore, these effects increase when a signaling mechanism

is introduced, which allows a users greenness to be broadcast to the world and compared

to others in their surroundings.

Many of these findings are surprising and contraindicate previously mentioned find-

ings, so it is important to remind oneself that previous studies were carried out in a

non-mobile environment, and are not capturing the same kind of user experience and

expectations that the studies I have conducted with my collaborator.

Along with the summary of work, this final chapter lists the major contributions of my

doctoral work, as well as avenues for future work based on the work already completed.
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10.1 Contributions

The major contributions of my dissertation are:

• Establishing that modern systems are in fact sometimes running too fast, and that

by selectively delaying parts of user-interface code, we create an opportunity for

energy savings while not irritating the end user. I show this by delaying end-

user JavaScript with simulated sleep calls, and create the JSSlow proxy to inject

these calls into the JavaScript of popular websites. Most power savings are realized

from advertising and buggy code, with an average of 5% reduction in energy found

during a user study.

• Establishing the opportunity for using delays in cloud-backed mobile applica-

tions by demonstrating that user delay tolerance is higher than previously in-

dicated. By conducting studies in which delays were randomly injected into real

world, popular applications, and also by allowing users to set their own delays, I

have shown that delays of up to 750ms are acceptable for users.

• Showing that traffic can be shaped while staying within the demonstrated user

delay tolerance. I create and simulate an initial algorithm for shaping user traffic

based on traces collected during user studies, and show that the traffic can be made

to more closely resemble desired characteristics, while not introducing delays larger

than those showed to be acceptable.

• Showing that only equating larger delays with environmental friendliness is not

enough to cause behavioral changes. We initially assumed that by telling users

that by allowing the performance of their mobile applications degrade they would
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allowing the backing cloud to operate in a more environmentally friendly setting,

they would be willing to tolerate additional delays. We show that this is in fact not

the case, at least for the demographics of the studies we carry out.

• Showing that peer pressure mechanisms can create power for environmental pro-

mpting. When we added a signaling interface to the smartphone user study we saw

large and obvious effects added to the environmental prompting. In the Mechanical

Turk study carried out we saw effects of the group comparison, but ultimately failed

to produce an environmental differentiation. This result strengthens our assertion

that users have an altogether different perception and experience in mobile environ-

ments, and that we have a unique opportunity to effect changes in that arena.

10.2 Future work

I now lay out some potential avenues for future work. Having laid the groundwork for

establishing the size of the user delay tolerance envelope, there is much work left to be

done in expanding the envelope with signaling interfaces, and in building a system that

would take individual envelopes into account and apply traffic shaping as appropriate.

Design a real world signaling mechanism. We tested a simple peer pressure mech-

anism in our user studies - showing users a (simulated) group average and how they

compared to it. This approach produced positive results, but we think that more complex

interfaces would be able to provide an even bigger effect. We envision a system where a

user would be broadcasting a literal signal to the world around them, such as a colored

LED that would indicate just how environmentally friendly they were being.
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Study more environmentally conscious populations. We ran our user studies on popu-

lations located in the Unites States and China, and found that just environmental prompt-

ing was not enough to effect behavioral changes. It could prove interesting and perhaps

useful to repeat these studies on populations that are known to be more environmen-

tally friendly, in countries where attention to recycling and automotive emissions have

already produced changes in the general population, such as Germany or Austria [3],

or Sweden—where the country produces so little trash that they have begun importing it

from other countries for energy production [15]. If studies in such countries demonstrated

more power of the prompting, it could be a good indication of such effects spreading to

the US as well in the future1.

Deploy traffic shaping at an individual user level and study the results in the aggre-

gate. We created one algorithm for shaping user traffic, and analyzed it by running it on

traces collected from earlier user studies. It would be good to develop additional shaping

algorithms, different shaping targets, and deploy a system which puts them into effect

on many users, studying what the effects on both their traffic patterns and behavior they

would have.

Design and study mechanisms for deducing user satisfaction dynamically. Currently

we do not attempt to infer a users satisfaction in any interfaces, and rather let the user

control their delay settings manually. By incorporating additional feedback, such as from

sensors that could be worn by the user, or other feedback mechanisms such as shaking or

tapping a phone, we could design an interface which learns when a user is dissatisfied,
1Though hopefully the idea that mainstream US culture adopts for environmentally friendly habits is

not just the optimistic thinking of yours truly.
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and attempts to modulate their delay setting accordingly.

Design a dynamic representation of the environmental friendliness of a user. We cur-

rently use the default delay setting as a proxy for how environmentally friendly a user

is at any given point in time, but this will surely prove to be too simplistic of a measure

in the long run. We have seem from related works that interfaces which track behavior

over time, and provide emotional feedback, such as the virtual polar bear or the Tam-

agotchi, can encourage behavioral changes in users. We would like to develop a system

and interface which leverages this power in encouraging users to change their behav-

ior in environmentally positive ways, while not overly discouraging them for short term

behaviors.

Context of performance expectations An open question in why the delay tolerance en-

velope of users has been found to be so high in these studies, is how much of this is due

to users having low expectations of performance in a mobile environment due to poor

quality cellular data networks, or slower hardware / unoptimized mobile software? As

both hardware and cellular networks continue to make make progress, it would be very

interesting to repeat our studies, especially our “in-the-wild” study done on real applica-

tions, as well as the lab study at PKU in which users controlled their delay setting, and

seeing if the results begin to change at all.

Quick hardware idle states One of the reasons for the massive overprovisioning of

server nodes in datacenters is the very large amount of time (many minutes) of powering

on those nodes. As progress is made in lower power states in server hardware this power

on time may become less problematic, meaning that dealing with burstiness may become
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easier. This may not entirely reduce the need for the shaping methods I have proposed

in this work, but rather shift the focus onto what shaping targets would be optimal, and

what kind of characteristics would then be most beneficial for datacenter operators.
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Appendix A

Emulating hardware transactional

memory with VMM

In this appendix I describe work that I did with my co-author Kyle Hale, on emulating

RTM, Intel’s implementation of hardware transactional memory which was added to their

Haswell line of processors. The result of this work was published as a full paper in the

ROSS workshop in conjunction with HPDC in 2014.

Hardware transactional memory (HTM) [60] is an enduring concept that holds consid-

erable promise for improving the correctness and performance of concurrent programs

on hardware multiprocessors. Today’s typical server platforms are already small scale

NUMA machines. A mid-range server may have as many as 64 hardware threads spread

over 4 sockets. Further, it is widely accepted that the growth of single node performance

depends on increased concurrency within the node. For example, the U.S. national ex-

ascale efforts are crystallizing around a model of billion-way parallelism [2], of which a

factor of 1000 or more is anticipated to be within a single node [106]. Given these trends,

correct and efficient concurrency within a single node or server is of overarching impor-
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tance, not just to systems software, but also to libraries and applications.

HTM promises better correctness in concurrent code by replacing locking with trans-

actions over instructions. Unlike locks, such transactions are composable, meaning that it

is less likely to introduce deadlock and livelock bugs as a codebase expands. Furthermore,

transactions have the potential for running faster than locks because the hardware is able

to detect violations of transaction independence alongside of maintaining coherence.

Intel has made HTM a component of its Haswell platform, and chips with the first

implementation of this feature are now widely available. This appendix focuses on the

restricted transactional memory (RTM) component of Intel’s specification. RTM is a bit

of a misnomer—it might better be called explicit transactional memory. With RTM, the

programmer starts, aborts, and completes transactions using new instructions added to

the ISA. Our work does not address the other component of Intel’s specification, hard-

ware lock elision (HLE), which is a mechanism for promoting some forms of existing

lock-based code to transactions automatically—i.e., it is implicit transactional memory.

Our appendix focuses on how to extend a virtual machine monitor (VMM) so that it

can provide the guest with Intel Haswell RTM capability even if the underlying hardware

does not support it. Furthermore, the limitations of this emulated capability can differ

from that of the underlying hardware.

There are three primary use cases. The first is in testing RTM code against different

hardware models, to attempt to make the code resilient to different and changing hard-

ware. As we describe in more detail in Section A.1, transaction aborts are caused not only

by the detection of failures of transaction independence, but also by other events that are

strongly dependent on specific hardware configurations and implementations. Hence, a

transaction that may succeed on one processor model might abort on another model.
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The second use case is to consider potential future RTM implementations, including

those that might allow arbitrary length transactions. Current RTM hardware implemen-

tations limit transaction length due to cache size and write buffer size limitations. Our

system is free of such limitations unless they are explicitly configured. Conceivably, this

functionality could also be used to bridge RTM and software transactional memory.

The third use case is in debugging RTM code via a controlled environment. Through

emulation, it is possible to introduce abort-generating events at specific points and ob-

serve the effects. It is also possible to collect detailed trace data from running code.

We have designed, implemented, and evaluated a system for Intel RTM emulation

within the Palacios VMM. Our techniques are not specific to Palacios, and could be im-

plemented in other VMMs as well. Our implementation is available as a part of the open-

source Palacios codebase. Our contributions are as follows:

• We have designed a page-flipping technique that allows instruction execution while

capturing instruction fetches, and data reads and writes. This technique avoids

the need for any instruction emulation or complex instruction decoding other than

determining instruction length. This greatly simplifies RTM emulation and could

be applied to other services.

• We have designed an emulation technique for RTM based around the page-flipping

technique, redo-logging, undefined opcode exceptions, and hypercalls. The tech-

nique is extensible, allowing for the inclusion of different hardware models, for ex-

ample different cache sizes and structures.

• We have implemented the RTM emulation technique in Palacios. The entire tech-

nique comprises about 1300 lines of C code.
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• We have evaluated our VMM-based RTM emulation technique and compared it

with Intel’s emulator-based implementation of Haswell RTM in the Software Devel-

opment Emulator [67]. Our implementation is approximately 60 times faster when

a transaction is executing, and has full performance when none are.

Related work: Herlihy and Moss introduced HTM [60]. Recent work by Rajwar, Herlihy,

and Lai showed how HTM could be extended such that hardware resource limitations

would not be programmer visible [103]. Unbounded transactional memory [7] shows

that hardware designs that allow arbitrarily long transactions are feasible, and this work

also demonstrated that using such transactions would allow for significant speedups in

Java and Linux kernel code. Hammond et al. [58] have argued for using such power-

ful transactions as the basic unit of parallelism, coherence, and consistency. In contrast

to such work, our goal is simply to efficiently emulate a specific commercially available

HTM system that will have model-specific hardware resource limitations. By using our

system, programmers will be able to test how different hardware limits might affect their

programs. However, because the conditions under which our system aborts a transaction

are software defined, and the core conflict detection process will work for a transaction of

any size, provided sufficient memory is available, our system could also be employed to

test models such as the ones described above. IBM has produced their own implementa-

tion of HTM in the BlueGene/Q architecture [133].

Our system leverages common software transactional data structures, such as hashes

and redo logs. Moore et al. developed an undo log-based hardware transactional memory

system [95] which lets all writes go through to memory and rolls them back upon conflict

detection. Our emulator rolls a redo log forward on a commit.
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A.1 Haswell transactional memory

The Haswell generation of Intel processors include an implementation of hardware trans-

actional memory. The specification for transactional synchronization extensions (TSX) has

the goals of providing support for new code that explicitly uses transactions, backward

compatibility of some such new code to older processors, and allowing for hardware

differences and innovation under the ISA-visible model [66]. There are two models sup-

ported by TSX, hardware lock elision (HLE) and restricted transactional memory (RTM). Our

focus in this appendix is on RTM.

A.1.1 Restricted transactional memory

In the RTM model, four additional instructions have been added to the ISA: XBEGIN,

XEND, XABORT, and XTEST. The system software uses CPUID checks to determine if

these instructions are available on the present hardware. If they are executed on hardware

which does not support them, a #UD (undefined opcode) exception is generated. Code

can use the XTEST instruction to determine if it is executing within a transaction. An

RTM transaction is typically written in a form like this:

start_label:

XBEGIN abort_label

<body of transaction, may use XABORT>

XEND

success_label:

<handle transaction commited>

abort_label:
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<handle transaction aborted>

The XBEGIN instruction signifies the start of a transaction, and provides the hardware

with the address to jump to if the transaction is aborted. The body of the transaction then

executes. If no abort conditions arise, the transaction is committed by the XEND.

Conceptually, the core on which the body of the transaction, from XBEGIN to XEND,

executes does reads and writes that are independent of those from other cores, and its

own writes are not seen by other cores until after the XEND completes successfully. If

another core executes a conflicting write or read, breaking the promise of independence,

the hardware will abort the transaction, discard all of the completed writes, and jump

to the abort label. The code in the body of the transaction may also explicitly abort the

transaction using the XABORT instruction. The specific reason is written into RAX so the

abort handling code can decide what to do.

Beyond conflicting memory reads and writes on other cores, and the execution of the

XABORT instruction, there are numerous reasons why a transaction may abort. These

form three categories: instructions, exceptions, and resource limits. Within each category,

there are both implementation-independent and implementation-dependent items. One

of the benefits of our emulated RTM system is to allow the testing of RTM code under

different implementations to bullet-proof it.

Instructions: The XABORT, CPUID, and PAUSE instructions are guaranteed to abort in

all implementations. In addition, the specification indicates a very diverse set of other

instruction classes may also cause aborts, depending on the specific RTM implementation.

Whether or not the following instructions may abort depends on the implementation:

• X87 floating point and MMX instructions
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• Instructions that update non-status parts of RFLAGS

• Instructions that update segment, debug, and control registers

• Instructions that cause ring (protection level) transitions, such as the fast system call

instructions

• Instructions that explicitly affect the TLB or caches

• Software interrupt instructions

• I/O instructions

• Instructions within the virtualization extensions

• SMX instructions

• A range of privileged instructions such as HLT, MONITOR/MWAIT, RD/WRMSR,

etc.

An important point is that our system does not require decoding and emulating gen-

eral instructions, and to abort on one of these classes of instructions we need only decode

an instruction sufficiently to identify its class. Any such decoding need happen only for

the instructions within the transaction. Furthermore, many of these instructions are al-

ready detected in the VMM out of necessity (e.g., control and segment register updates,

I/O instructions, virtualization instructions, most privileged instructions), and others can

be readily intercepted without decoding (e.g. RFLAGS updates, debug registers, ring

transitions, TLB instructions, software interrupts).

Exceptions: An exception on the core executing a transaction generally causes the transac-

tion to abort, although the specification has variable clarity about which exception aborts
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are implementation-dependent and which are guaranteed. We assume that all exceptions

that the Intel specification says “may” cause aborts “will” cause aborts. This behavior can

easily be changed within our hardware model. The following exceptions cause aborts:

• All synchronous exceptions

• General interrupts

• NMI, SMI, IPI, PMI, and other special interrupts

As the VMM is already responsible for injection of general and special interrupts, it can

easily detect aborts due to asynchronous exceptions. Detecting synchronous exceptions

is slightly more challenging, as we discuss later.

Exception delivery within the context of a transaction abort has unusual, although

sensible semantics. For synchronous exceptions, the abort causes the exception to be

suppressed. For example, if a transaction causes a divide-by-zero exception, the hard-

ware will abort the transaction, but eat the exception. For interrupts, the abort causes

the interrupt to be held pending until the abort has been processed. For example, if a

device interrupt happens during the execution of a transaction, the hardware will abort

the transaction, and begin its fetch at abort_label before the interrupt vectors.

Resource limits: The specification indicates that transactions may only involve memory

whose type is writeback-cacheable. Use of other memory types will cause an abort. Addi-

tionally, pages involved in the transaction may need to be accessed and dirty prior to the

start of the transaction on some implementations. Finally, the specification warns against

excessive transaction sizes and indicates that “the architecture provides no guarantee of

the amount of resources available to do transactional execution and does not guarantee

that a transactional execution will ever succeed.”
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Our interpretation of these parts of the specification is that a typical implementation is

expected to be built on top of cache coherence logic. The implication is that transactions

will behave differently on different hardware just to cache differences. The line size will

likely define the conflict granularity for transactions. Two writes to the same cache line,

but to different words, will likely conflict. Hence, the larger cache line, the more likely a

transaction is to fall victim to an abort caused by a false conflict.

Our system allows the inclusion of a hardware model that can capture these effects,

allowing the bullet-proofing of code that uses transactions, and the evaluation of the ef-

fects of different prospective hardware models on the code. Interestingly, because it is a

software system, it creates the effect of hardware without resource limits.

A.1.2 Hardware lock elision (HLE)

RTM code is not backwards-compatible with older processors. Simultaneously, older

code that uses locks needs to be rewritten in order to use RTM. Hardware lock elision

is Intel’s attempt to address both problems within the context of a transactional memory

implementation. HLE and RTM are essentially different interfaces to a shared transac-

tional memory implementation. With HLE, the hardware optimistically executes lock-

based code using a transaction instead of a lock, automatically falling back on the original

lock-based semantics if the transaction fails. The code itself is unaware of this operation.

HLE focuses on two existing x86 ISA features intended to facilitate the implementation

of locks: the LOCK prefix and the XCHG instruction. In the following, we will focus on

the XCHG instruction, which atomically exchanges the value stored at a memory location

and the value stored in a register. LOCK-prefixed instructions operate similarly.1

1It is surprising that instructions such as XADD, which better support widely used ticket locks are not
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Using the XCHG instruction, the following simplistic, yet illustrative lock/unlock

primitives might be written. The + and - characters will be discussed later.

lock: // lock ptr in %rbx, will clobber %rax

movq $1, %rax

spin:

+ xchg (%rbx), %rax

cmpq %rax, $0

jne spin

ret

unlock: // lock ptr in rbx

- movq $0, (%rbx)

ret

HLE also introduces two additional instruction prefixes, XACQUIRE and XRELEASE,

which are hints that the prefixed instruction is acquiring (releasing) a lock. To enable

the above code to use HLE, we would replace the line marked as + with XACQUIRE

(giving xacquire xchg (%rbx), %eax), and the line marked as - with XRELEASE (giving

xrelease movq $0, (%rbx)).

These instruction prefixes overload the existing REPNE and REPE prefixes, which

happen have no meaning for the particular instructions that HLE supports. On older

processors without HLE, the presence of these prefixes on these particular instructions is

not undefined, it is just ignored. That is, on older processors, the above code, behaves

identically whether the XACQUIRE/XRELEASE prefixes are included.

currently supported by HLE, at least as far as the specification indicates.
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On a processor with HLE, the XACQUIRE hint results in the core opening a transac-

tion. The write to the lock essentially becomes an XBEGIN followed by a tagging of the

lock’s memory location in the cache. The value read by the XCHG is also stored. No write

actually occurs. The XRELEASE hint then is effectively an XEND, with the added check

that the value written back to the lock is the same as the one originally read during the

XACQUIRE. In effect, the “lock” is now taken optimistically, and if this optimism is un-

warranted at the XRELEASE, the transaction, from XACQUIRE to XRELEASE, is aborted.

The abort is not software visible. Instead, the hardware reverts all the changes of the

transaction, and then re-executes starting at the XACQUIRE, either trying the transaction

again, or reverting to non-transactional processing (ignoring the XACQUIRE/XEND). In

the end, it can always make progress if the original code was able to make progress.

A.2 Design and implementation

The implementation of our RTM emulation system is done in the context of our Palacios

VMM [80], but its overall design could be used within other VMMs. We now describe our

system, starting with the assumptions we make and the context of our implementation,

followed by an explanation of the page-flipping approach the system is based on, and

finally the architecture and operation of the system itself.

A.2.1 Assumptions

We assume that our system is implemented in the context of a VMM for x86/x64 that

implements full system virtualization. Such VMMs can control privileged processor and

machine state that is used when the guest OS is running, and can intercept guest ma-
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nipulations of machine state. We assume the VMM infrastructure provides the following

functionality for control and interception:

1. Shadow paging. We assume shadow paging in the VTLB model [68, Chapter 31]

is available. It is not essential that the guest run with shadow paging at all times,

merely that it is possible to switch to shadow paging during transaction execution.

2. Explicit VTLB invalidation. We assume that the VMM allows us to explicitly invali-

date some or all entries in the shadow paging VTLB, independent of normal shadow

page fault processing.

3. Shadow page fault hooking. We assume that the VMM allows us to participate

in shadow page fault handling. More specifically, we assume it is possible for us

to install a shadow page fault handler that is invoked after a shadow page fault

has been determined to be valid with respect to guest state. Our handler can then

choose whether to fix the relevant shadow page table entry itself, or can defer to the

normal shadow page table fixup processing.

4. Undefined opcode exception interception. We assume the VMM allows us to inter-

cept the x86/x64 undefined opcode exception when it occurs in the guest.

5. CPUID interception. We assume the VMM allows us to intercept the CPUID instruc-

tion and/or set particular components of the result of CPUID requests.

6. Exception interception. We assume the VMM allows us to selectively enable inter-

ception of exceptions and install exit handlers for them.

7. Exception/interrupt injection cognizance. We assume the VMM can tell us when a

VM entry will involve the injection of exceptions or interrupts into the guest. If the
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VMM uses guest-first interrupt delivery in which an interrupt can vector to guest

code without VMM involvement, then it must be possible to disable this for the

duration of the transaction so that the VMM can see all interrupt and exception

injection activity.

The hardware virtualization extensions provided by Intel and AMD are sufficient for

meeting the above assumptions. The same capabilities that the hardware provides could

also be implemented in translating VMMs or paravirtualized VMMs. Common VMMs

already meet 1, 2, 3, 5, and 7 as a matter of course. Items 4 (undefined opcode intercep-

tion) and 6 (exception interception) are straightforward to implement. In AMD SVM, for

example, there is simply a bit vector in the VMCB where one indicates which exceptions

to intercept. On VM exit due to such an interception, the hardware provides the specific

exception number.

Palacios already met most of the assumptions given in Section A.2.1. Shadow paging

capabilities in Palacios reflect efforts to allow dynamic changes for adaptation. Palacios

did not include support for assumptions 4 and 6 (exception interception). Perhaps ironi-

cally, our initial implementation of these two is for AMD SVM. However, Intel’s VT also

provides an exception bitmap to select which exceptions in the guest require a VM exit,

so these changes could be readily made for VT. In Palacios, exception/interrupt injection

cognizance (assumption 6) is implemented with a check immediately before VM entry, in

SVM or VT-specific code. For the sake of initial implementation simplicity, we focused

here again on the SVM version.
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A.2.2 Palacios VMM

Our system is implemented in the context of our Palacios VMM. Palacios is an OS-inde-

pendent, open source, BSD-licensed, publicly available embeddable VMM designed as

part of the V3VEE project (http://v3vee.org). The V3VEE project is a collaborative com-

munity resource development project involving Northwestern University, the University

of New Mexico, Sandia National Labs, and Oak Ridge National Lab. Detailed informa-

tion about Palacios can be found elsewhere [79]. Palacios is capable of virtualizing large

scale systems (4096+ nodes) with < 5% overheads [82]. Palacios’s OS-agnostic design

allows it to be embedded into a wide range of different OS architectures.

The Palacios implementation is built on the virtualization extensions deployed in cur-

rent generation x86/x64 processors, specifically AMD’s SVM and Intel’s VT. Palacios sup-

ports both 32 and 64 bit host and guest environments, both shadow and nested paging

models, and a significant set of devices that comprise the PC platform. Due to the ubiq-

uity of the x86/x64 architecture Palacios is capable of operating across many classes of

machines. Palacios has successfully virtualized commodity desktops and servers, high

end Infiniband clusters, and Cray XT and XK supercomputers.

A.2.3 Architecture

Figure A.1 illustrates the architecture of our system. It shows a guest with two virtual

cores, one executing within a transaction, the other not. The figure illustrates two core

elements, the per-core MIME (Section A.2.4), which extracts fine-grain access information

during execution, and the global RTME (Section A.2.5), which implements the Intel RTM

model. The RTME configures the MIMEs to feed the memory reference information into

http://v3vee.org
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Figure A.1: Overall architecture of the system

the conflict hash data structures (for all cores), and the per-core redo log data structure

(for each core executing in a transaction). The conflict hash data structures are used by

the RTME to detect inherent memory access conflicts that should cause transaction aborts

regardless of the hardware resource limitations. Additionally, the memory references

feed a pluggable cache model, which detects hardware-limitation-specific conflicts that

should cause transaction aborts. The RTME is also fed by the instruction sequences from

cores operating in transactions, and by intercepted exceptions from the guest and injected

exceptions or interrupts from the VMM, which also are needed to assess whether an abort

should occur.

When no virtual core is executing in a transaction, we revert to normal execution of

instructions by the hardware. The switch to the illustrated mode of operation occurs

when an XBEGIN instruction is detected via an undefined opcode exception. Only this

particular exception needs to be intercepted during normal (non-transactional) execution.
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A.2.4 Memory and Instruction Meta-Engine

A core requirement of transactional memory emulation is being able to determine the

memory addresses and data used by the reads and writes of individual instructions.

When a transaction is active on any core, all cores must log their activities, producing

tuples of the form {vcore, sequencenum, rip, address, size, value, type} where

sequencenum orders the tuples of a given vcore, rip is the address of the instruction being

executed, address is the address being read or written, size is the size of the read or write,

value is the value read or written, and type indicates whether the reference is a read, write,

or instruction fetch.

Our design accomplishes this fine-grain capture of the memory operations and data of

instruction execution via the Memory and Instruction Meta-Engine, or the MIME. 2 One

of the major contributions of this work is the novel page-flipping technique on which the

MIME is based. This technique allows us to avoid instruction emulation and most aspects

of instruction decoding. The MIME’s page-flipping technique is based on the indirection

and forced page faults made possible through shadow paging, and breakpoints to the

VMM made possible through the hypercall mechanism.

Shadow paging and shadow page faults: It is necessary for the VMM to control the pages

of physical memory that the guest has access to. Conceptually, with the VMM, there are

two levels of indirection. Guest virtual addresses (GVAs) are mapped to guest physical

addresses (GPAs) by the guest OS’s page tables (the gPT), and GPAs are in turn mapped

to host physical addresses (HPAs) by the VMM.

There are two main methods of supporting this mapping, nested paging and shadow
2The name is chosen for two reasons. First, the MIME mimics instruction execution. Second, it operates

at a meta-level by manipulating the processor’s instruction execution engine.
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paging. In nested paging, the GPA→HPA mapping is maintained in separate page tables

constructed by the VMM (the nPT), and used by the hardware jointly with the guest page

tables in the process of translating every memory reference in the guest. The VMM can

safely ignore the gPT since the hardware is integrates the gPT and the nPT.

In shadow paging, the GVA→GPA and GPA→HPA mappings are integrated by the

VMM into a single set of shadow page tables (the sPT) that express GVA→HPA map-

pings that combine guest and VMM intent. The VMM makes the hardware use this in-

tegrated set of page tables when the guest is running. Unlike nested paging, the VMM

cares about changes to the guest page tables and other paging state in shadow paging.

Any architecturally visible change to guest paging state needs to invoke the VMM so that

the VMM can adjust the integrated page tables to incorporate it. In order to do so, the

VMM intercepts TLB-related instructions and control register reads and writes. Hence,

any operation the guest performs to alert the hardware TLB of a change instead alerts

the VMM of the change. The VMM’s shadow paging implementation thus acts as a “vir-

tual TLB” (VTLB) and the shadow page tables are the VTLB state which mirror what the

guest “thinks” is happening in hardware, and map guest virtual addresses (GVA) to host

physical addresses (HPA). Notably, this eliminates the need to convert from GVA to GPA.

Since the guest writes to its guest page tables (gPT) and is unaware of the shadow page

tables (sPT) additional synchronization must be performed, which we will illustrate with

an example.

Suppose the guest creates a mapping (a page table entry) for the GVA 0xdeadb000,

which it does by writing this mapping to the gPT. The new mapping is not guaranteed

to be architecturally visible until the TLB is informed. The guest does this by using an

INVLPG instruction to flush any matching entry from the TLB. The VMM intercepts this
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instruction, where it informs the VMM that any entry that has the VTLB (the sPT) must

be removed. When the guest later accesses some address on the newly mapped page,

for example 0xdeadbeef, the hardware walks the sPT, and on finding no entry, raises a

page fault. The page fault is also intercepted by the VMM, which starts a walk of the gPT,

looking for 0xdeadb000. If no such entry existed in the gPT, the VMM would then inject

a page fault into the guest. In this case, however, the gPT has a corresponding entry, and

so the sPT is updated to include this entry, as well as a mapping to the appropriate HPA.

Since the page fault occurred as a result of inconsistency between the sPT and gPT, it is

referred to as a shadow page fault, and the guest OS is unaware that it ever happened.

The next time the guest tries to access any address on the page 0xdeadb000 the sPT will

have the correct mapping.

In the above example, a mapping was evicted from the VTLB (the sPT) due to the IN-

VLPG instruction. It is also possible for VTLB eviction to be triggered for other reasons

inside the VMM. In Palacios, there are internally usable functions for invalidating indi-

vidual pages or all pages of an SPT. Thus, code in Palacios, such as the MIME, can force a

shadow page fault to happen on the next access to a page.

Breakpoint hypercalls: In addition to forced shadow page faults, the MIME also relies

on being able to introduce breakpoints that cause an exit back to the VMM, which we

accomplish with a hypercall. Both AMD and Intel support special instructions, vmmcall in

the case of AMD, that force an exit to the VMM. To set a breakpoint at a given instruction,

we overwrite it with a vmmcall, after first copying out the original instruction To resume

execution, we simply copy back in the original instruction content and set the instruction

pointer to it.

Process: We now describe the MIME process for executing an instruction using the fol-
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lowing example:

prev: addq %rbx, %rax

cur: INSTRUCTION

next: movq %rdx, %rbx

...

target:

...

Here, cur is the address of the instruction we intend to execute, while next is the address

of the subsequent instruction, and target is a branch target if the current instruction is a

control-flow instruction.

Write-only data flow instruction: Let us make the current instruction more specific, for ex-

ample, suppose it is

cur: movq %rax, (%rcx)

This instruction writes the memory location in the register %rcx with the 8 byte quantity in

the register %rax. MIME executes this instruction, and other instructions in the following

way. We begin this process with the requirement that the sPT is completely empty.Note

that the last step in the following reestablishes this for the next instruction.

1. We enter the guest with %rip=cur.

2. The instruction fetch causes a shadow page fault, which exits back to the VMM,

which hands it to the MIME.

3. The MIME discovers this is an instruction fetch by comparing the faulting address

and the current %rip and noting the fault error code is a read failure. In response,
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it creates an sPT entry for the page the instruction is on. While the page is fully

readable and writable by the MIME, the sPT entry allows the guest only to read it.

The MIME then overwrites next with a hypercall, saving the previous content.

4. We enter the guest with %rip=cur.

5. The instruction fetch now succeeds. Instruction execution now succeeds as well, up

to the data write. The data write produces a shadow page fault, which exits back to

the VMM, which hands it the MIME.

6. The MIME discovers this is a data write by noting that the fault code is a write

failure. It can optionally compare the fault address with the instruction pointer to

determine whether this is an attempt to modify the currently executing instruction.

This can serve as a trigger for transaction abort when the MIME is used in the TM

system.

7. In response to the data write, the MIME maps a temporary staging page in the sPT

for the faulting address, and it stores the address of the write.

8. We enter the guest with %rip=cur.

9. The instruction fetch and the data write now succeed and the instruction finishes,

writing its result in the temporary staging page.

10. %rip advances to next, resulting in the fetch and execution of the hypercall (note

that the code page is now mapped in), which exits back to the VMM, which hands

it to the MIME.

11. The MIME now reads the value that was written by the instruction on the temporary

staging page. It can now make this write available for use by other systems. For
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example, the RTM system will place it into its own data structures if a transaction is

occurring. If no other system is interested, it copies the write back to the actual data

page.

12. At this point the MIME has generated two tuples for the record: the instruction fetch

and the data write.

13. The MIME now restores the instruction at next

14. The MIME invalidates all pages in the VTLB. Strictly speaking, only two pages are

unmapped from the sPT, the code page and the temporary staging page.

15. If MIME-based execution is to continue with next, goto 1, otherwise we are done.

Read-only data flow instruction: For an instruction like

cur: movq (%rcx), %rax.

which reads 8 bytes from the memory location given in %rcx and writes that result into

the register %rax, execution is quite similar. At stage 5, a shadow page fault due to the

data read will occur. In stage 6, the MIME will detect it is a data read and sanity check

it if needed. In stage 7, the MIME will map the staging page read-only, and copy the

data to be read to it. This data can come from a different system. For example, the RTM

system might supply the data if the read is for a memory location that was previously

written during the current transaction. After the instruction finishes, it will then provide

two tuples for the record: the instruction fetch and the data read.

Read/write data flow instruction: It is straightforward to execute an instruction such as

cur: addq %rax, (%rcx)
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which reads the 8 bytes from memory at %rcx adds them to the contents of %rax and then

writes the 8 byte sum back to the memory at the address in %rcx. For all but the final

write, the execution is identical to that of the read-only instruction given above. After

completing stage 7, the staging page will be mapped read-only, and thus there will be an

additional shadow page fault corresponding to the write. This fault will be handled in the

same manner as with the write-only instruction. After the instruction finishes execution,

it will then provide three tuples for the record: the instruction fetch, the data read, and

the data write.

Control flow instruction: If a control flow instruction reads data (e.g., an indirect jump) or

writes data (e.g., a stack write on a call), these reads and writes are handled in the same

manner as the preceding data flow instructions. Since all the conditions to be checked

(e.g., flags) are known at this point, we can “emulate” the instruction, placing the hyper-

call at the jump target.

The key difference in the processing of control flow instructions is that there are up

to two breakpoints that need to be introduced. For unconditional control flow, a single

breakpoint needs to be introduced at the target address instead of at the next instruction.

For conditional control flow, two breakpoints need to be introduced, one at the target and

one at the next instruction.

Generalization: Although the above description uses simple two operand instructions

and the simplest memory addressing mode as examples, it’s important to note that the

technique works identically for different numbers of operands and for arbitrary address-

ing modes. Indeed, even for implicit memory operands, the hardware will produce

shadow page faults alerting us to their presence. The primary limitation is that an in-

struction with multiple reads and/or multiple writes to the same page may not have all
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of its reads and writes captured. We describe this in detail later. All addressing mode

computations, as well as segmentation, are done well before a page fault on instruction

or data references can result. The hardware does this heavy-lifting.

Instruction decoding and emulation: Step 3 of the processing described above requires

basic instruction decoding. The issue is that x86/x64 instructions are of variable length

(from 1 to 15 bytes). Hence, in order to determine what next is, we need to be able to de-

termine the size of the current instruction. If the MIME does not need to trace control-flow

instructions, this is the only requirement. If control-flow instructions are to be handled

by the MIME, then we must further decode control-flow instructions to the point where

we can also determine their target address. Our implementation uses the open source

Quix86 decoder [76] to do this decoding for us. No emulation is done at all—we rely on

the hardware to do instruction execution for us instead.

Page-flipping in Palacios: Since transactional memory keeps track of memory at much

finer granularity than locks, we needed to be able to record all reads and writes happening

in the guest. We leverage shadow paging and control over the sPT in order to accomplish

this.

At the beginning of a transactional block, marked by an XBEGIN, we set up the nec-

essary internal state, and flush the sPT. This means that each memory access attempt will

result in a page fault, which we can catch in the VMM. The page-flipping technique clears

the sPT between instructions, which allows us to use shadow page faults to track all of the

reads and writes that happen in the guest, the process is illustrated in Figure A.2. Once

the sPT has been flushed, the first page fault that should occur in the guest is a result of

the IFETCH of the instruction immediately following the XBEGIN, which we verify by

checking that the faulting address is the same as the address pointed to by the guest’s
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RIP. We allow the VMM to map this memory location in, and await the memory accesses

caused by the instruction. Since x86 instructions can read from memory, write to mem-

ory, do both, or neither, we must be prepared to catch any of these events. If we see a

read from memory, we map in the corresponding page, map it as read only, and allow the

instruction to restart. If we see a write to memory, we map the page in, mark it with the

same writable status as in the gPT, and allow the instruction to restart. We do not auto-

matically mark the page as writable to keep from writing to pages the guest had marked

as read-only. If no reads or writes occur, the sPT is once again flushed in order to catch

the IFETCH of the next instruction.

Read optimization in RTM: In our earlier description of handling read-only instructions

and read-write instructions, we describe the use of a staging page during the read—when

a data read is detected, we copy the value to be read to a staging page and present this

page to the guest. In RTM, this is required when a core executing a transaction reads a

value it has previously written during the transaction. At this point, in order to maintain

isolation, the written value exists only in a redo log and must be copied from it. For a

core that is not executing in a transaction, or for an in-transaction read of a value that was

not previously written in the transaction, the staging page can be avoided and the read

allowed to use the actual data page. This optimization is included in our RTM system.

Implementation limitations: There are two limitations of our implementation of the

MIME that we are aware of. The first is that in the context of a single instruction, we

can detect only the first read and the first write to an individual page. The reason for

this limitation is that in order to make progress in instruction execution, we must resolve

page faults. On a shadow page fault on a read of page, we enable read access to the

page, and similarly, a write enables write access to the page. Because the enabling access
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is done at the page granularity, subsequent references to the page do not result in fur-

ther shadow page faults. The primary class of instructions where this may be an issue is

string instructions with a REP prefix. The MIME can detect this prefix and raise an error to

the user—for RTM, the transaction is aborted. Many VMMs, including Palacios, already

have instruction emulation for this class of instructions, as it is often needed for I/O and

memory hooking. In principle, MIME could fall back on emulation for this specific case,

although it does not do so currently.

The second implementation limitation is that instructions or data that span two pages

are not supported. On the x86/64 the only alignment requirement imposed by the hard-

ware is byte-alignment, so such cases are legal. However, compilers try very hard to avoid

producing such cases, as unaligned references may be more expensive. Currently MIME

detects this situation and simply raises an error to the caller. The RTM implementation

turns it into a transaction abort.

A.2.5 Restricted Transactional Memory Engine

One of the benefits of our page-flipping technique is that we are able to accomplish single-

stepping of the guest OS without having to emulate any instructions except for XBEGIN,

XEND, and XABORT. When we begin a transaction, we begin page-flipping, but need to

be able to return to the VMM once an instruction has finished running. To do this, we

decode the instruction we are about to run to find its length, and replace the following

instruction with a VMMCALL with a value specific to transactional memory. The entire

process is captured as a finite state machine, illustrated in Figure A.3.

As shown in Figure A.1, the RTME uses per-virtual core MIMEs to capture instruc-

tions and their memory accesses in a step-by-step manner during execution. The only in-
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Figure A.2: The page-flipping technique
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#PF, write=1 #PF, write=0 VMMCALL

Figure A.3: TM state machine
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structions it needs to emulate are the XBEGIN, XEND, XABORT, and XTEST instructions.

Because these instructions are not available in the hardware, they cause an undefined

opcode exception which is caught by the VMM and delivered to the RTME.

The initial XBEGIN is emulated by capturing its abort target, advancing RIP to the

next instruction, and switching all virtual cores to MIME-based execution. Additionally,

the RTME has the VMM enable exiting on all exceptions with callbacks to the RTME. A

special check is enabled in the interrupt/exception injection code which is run before any

VM entry. This check tests if an injection will occur on entry, and if so it invokes a callback

to the RTME before the entry. Either callback is interpreted by the RTME as requiring a

transaction abort for that virtual core.

From the next entry on, MIME-based execution occurs on all virtual cores. On all

virtual cores, the writes seen by the MIME are written to the conflict hash data structures.

For a virtual core that is not executing in a transaction, the writes are also reflected to

guest memory, and all reads are serviced from guest memory. For a virtual core that is

executing in a transaction, writes are sent to the redo log instead of to guest memory.

Reads are serviced from guest memory, except if they refer to a previous write of the

transaction, in which case they are serviced from the redo log. For all cores, reads and

writes are also forwarded to the cache model by the RTME.

In addition to the callbacks described earlier, the RTME is also called back by the

MIME as it executes its state machine. This allows the RTME to examine each instruc-

tion and its memory operations to see if an abort is merited. Instructions are checked

against the list given earlier. For all memory operations, the RTME checks the conflict

hash data structures and the cache model. The former indicates whether a conflict would

have occurred assuming an ideal, infinite cache. For example, if this core is not in a trans-
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action, and has just written a memory location that some other core that is in a transaction

previously wrote, a conflict is detected and the other core needs to abort its transaction.

The cache model determines if a conflict due to hardware limitations has occurred. For

example, if the current write is coming from a core that is executing in a transaction,

and that write would cause a cache eviction of a previous write from the transaction, the

cache model would detect this conflict and indicate that the current core needs to abort its

transaction. A final source of an abort is when the RTME detects the XABORT instruction

during the MIME instruction fetch.

Handling a transaction abort is straightforward: the writes in the redo log are dis-

carded, the relevant error code is recorded in a guest register, the guest RIP is set to the

abort address, and the guest is re-entered. Transaction commits occur when the XEND in-

struction is detected, and are also straightforward: the RTME plays the redo log contents

into the guest memory, advances the RIP, and re-enters the guest. For either an abort or

a commit, we also check if it is the last active transaction. If so, we switch all cores back

to regular execution (turning off MIME, callbacks, and exception interception, except for

the illegal opcode exception, which is needed to detect the next XBEGIN).

XTEST instructions are identified by the RTME through a UD exception, if the instruc-

tion is run during an active RTM section, then the ZF flag is set, otherwise it is cleared.

Redo log considerations: Our redo log structure is not, strictly speaking, a log. Rather,

it stores only the last write and read to any given location. However, during MIME exe-

cution, there exist short periods where the most recent write or read is actually stored on

the MIME staging page. A versioning bit is used so that when the MIME-based execution

of an instruction completes, it is possible to update the redo log with newer entries on

the staging page. These aspects of the design allow us to compactly record all writes and
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internal reads of a transaction.

Conflict detection: In addition to the conflict hashes, conflict detection in the RTME uses

a global transactional memory (TM) state, a global transaction context, a per-core TM

state, and a per-core transaction number. The global TM state indicates whether any core

is running a transaction, while the per-core TM state indicates whether the specific core is

executing a transaction. Each core assigns sequence numbers to its transactions in strictly

ascending order, and the per-core transaction number is the number of the current, or

most recent transaction on that core. The global transaction context gives the number

of the currently active transaction, or most recently completed (aborted or committed)

transaction on each core.

When any core is running a transaction, all cores must record the memory accesses

they make, we accomplish this through the use of two hash tables. The first, called

the address context hash, is a chained hash mapping memory locations to timestamped

accesses. Each entry in the hashed bucket represents the global transaction context at

the time of a memory operation, which acts as a ordering, or timestamp. In this way

we are able to both record all memory accesses done by a core, as well as keep track

of when they occurred. Since all memory accesses are tagged with the global context,

when a core is checking for conflicts it can simply look at accesses made with the same

context as its current transaction number. Entries in the hash have the form {addr :

(global_ctxt)→(global_ctxt)→...}

The second hash table, called the access type hash, keeps track of the type of memory

operation that was run on an address in a given context (read, write, or both). When a

memory operation is run by a core, it creates one entry for each core in its hash. Data is du-

plicated in this manner to facilitate quick lookup on conflict checking as well as garbage
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collection. Entries in this hash have the form {addr|core_num|t_num : access_type}

Suppose we are running on a guest with two virtual cores, and core 0 begins a trans-

action. Each core will begin running its MIME and recording its memory accesses. Now

suppose core 1 runs an instruction which writes to memory address 0x53. It will first note

the global transactional context, and add a node to the bucket for address 0x53 in the ad-

dress context hash with this context. It will then make two new entries for the access type

hash, one for each core in the system. Each entry will map address 0x53, a core number,

and that core’s transaction number to a structure indicating the access was a write.

Suppose we are running a guest with two virtual cores: 0 and 1. Core 0 begins a

transaction, and the global context indicates that core 0 is on transaction number 5, core

0 on number 3. Core 1 runs an instruction that writes to memory location 0xdeadbeef,

it records this fact by first inserting into the address context hash a mapping from the

location 0xdeadbeef to the value 5:3, indicating the context during which the write hap-

pened. It then adds mappings to the access hash for keys 0xdeadbeef:core 0:5 and

0xdeadbeef:core 1:3, with values indicating those accesses were writes.

The conflict hashes data structure consists of two hash tables, for address context and

access type. The address context hash maps from a memory address to a list of transaction

contexts in which it has been seen. That is, when an access to address N occurs, we hash

N to its list, and append a copy of the current global transaction context to the xlist. The

transaction contexts effectively are timestamps of the references. The access type hash

maps from a concatenation of the memory address, the core, and that core’s transaction

number to the type of access that was seen (read, write, both). Note that this is not a list,

but rather simply records whether the address was read, written, or both. We illustrate

how recording happens with an example.
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External Read External Write
Read Continue Abort
Write Abort Abort

Figure A.4: The results of a transaction given the combination of a transaction operation
and an external operation on the same memory address.
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Figure A.5: An example of a write/write conflict detected by core 0 on a write from core
1

If the memory accesses of a core executing a transaction conflict with those of any other

core, the transaction must be aborted. To check for conflicts, we use the context hashes.

Conflict checking could be done after each instruction, or when attempting to commit a

transaction. In our implementation, conflict checking is cheap relative to instruction run

time and so we generally do it after each instruction.

In Figure A.5 we illustrate the process of conflict detection. At the end of an instruction

in a transactional block, core 0 walks its redo log of writes, shown as step 1. In step 2,
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core 0 checks if any conflicting memory accesses have been made by looking at every

other core’s address context hash. In the figure, core 0 checks for conflicting accesses to

memory address 0x53. In step 3, core 0 finds an entry for 0x53 in core 1’s address context

hash, and walks the list of contexts during which core 1 accessed 0x53. Core 0’s current

transaction number is 2, so the entry made during context {2,3} is a potential conflict. In

step 4 core 0 checks the entry for address 0x53 in core 1’s access type hash to identify the

kind of access made. Having found that core 1 wrote to address 0x53 when core 0 was in

transaction 2, a conflict is detected, and core 0 must abort its transaction, shown as step 5.

When the MIME indicates that an instruction executing in a transaction is finished,

the RTME, executing on that core will scan its redo log, checking each read and write for

conflicts with each of the other cores. Suppose now that core 0 is scanning its redo log,

and it contains a write to address 0x53. Core 0 will check the entry for address 0x53 in

every other core’s address context hash. If it finds a node with the same context as its own

current transaction number, that implies a potential conflict, and core 0 will then check

the entry in that remote core’s access type hash for the key with the address 0x53 and core

0’s transaction number under which the access was made. This tells it what kind of access

the other core performed, and thus we can discard a read/read pair as non-conflict.

We now see the beauty of the access type hash table - a core knows which core number

it is, and it knows its current transaction number, so for each entry in its redo log, it only

has to check one hash table entry in each other core. This gives conflict checking a runtime

of

Runtime = O((num_cores× hash_lookup)× redo_log_entries)

and since hash lookup is constant time, and the number of cores is constant, the runtime
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is proportional to the size of the redo log.

Garbage collection: Memory use expands during execution as the redo logs and con-

flict hashes grow in size. Redo logs are garbage collected at the end of each transaction.

Since the conflict hashes contain information from multiple generations of transactions,

we must answer the questions of how to determine which entries are garbage, and when

to perform this garbage collection.

Garbage collection leverages the access type hash. We start by noting the current

global transaction context, then we iterate over all the keys of the access type hash, and

for each key (an address), we walk over its corresponding list of contexts. If we find a

context that is strictly less than the global context, this means that there is no core left that

may need to check that memory operation, as it happened during transactions that are

no longer active. We can generate from this stale context the corresponding keys for the

access type hash, and delete those keys from it. Finally, we delete the stale context from

the list, and delete the key from the address context hash if the list is now of zero length.

A locking strategy is employed to assure that a garbage collection and MIME accesses are

mutually exclusive.

When to garbage collect is a more difficult question, as when we have an opportunity

to do so, we cannot be certain about the state of other cores, or when the next opportunity

to collect may occur. Currently in our implementation each core will garbage collect on

every transaction completion.

Core separation: A major aspect of our implementation is to allow each virtual core to

run independently of all other virtual cores to the greatest extent possible, as in a real

system. When a transaction is active, each core is independently being executed by a

MIME, and does not know, or care, what state any of the other cores is in. Whether other
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cores are recording, or running their own transactions, a core will operate in the same way.

Garbage collection is also handled independently of any other cores behavior. The only

time cores interact with one other is when setting the system in TM mode, or checking for

conflicts. Ironically enough, during conflict checking and garbage collection, cores must

acquire locks on the data s structures they wish to utilize.

Interrupt injection: MIME-based execution of guest instructions during a transaction

operates considerably slower than direct hardware execution. As a consequence, in our

system, a transaction is more likely to experience an external interrupt and thus a trans-

action abort. Of particular note are timer interrupts, which are ultimately derived from

host time. It is important to note that all external interrupts that the guest sees are in-

jected by the VMM. Hence, it is always possible to delay interrupt injection until after a

transaction completes. Furthermore, Palacios has a time-dilation feature [16], modeled

on DieCast [55], that was originally designed for interfacing with external simulators.

Time-dilation can also be used to slow the apparent passage of time in the guest by ma-

nipulating guest time sources, including the rate or period of timer devices (such as the

APIC timer) that produce interrupts. Using interrupt injection delay and time dilation, it

is possible to execute the transaction without an apparent interrupt, or with an interrupt

probability similar to what would have been experienced if MIME-based execution were

as fast as hardware execution.

If the transaction is aborted for any reason, the redo log gets cleared, and execution

continues at the fail_call with no changes to memory having been made. If the transac-

tion reaches an XEND, the transaction has finished successfully, and the VMM will walk

over the redo log, and “commit” the values of writes that had occurred during the trans-

action to memory.
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A.3 Evaluation

We considered three factors when evaluating our RTM implementation: its size, how it

runs code with transactions, and the performance of the implementation relative to the

native execution rate of the hardware and compared to a different emulator.

Test environment: All testing was done on a Dell PowerEdge R415. This is a dual socket

machine with each socket having a quadcore AMD Opteron 4122 installed, giving a total

of 8 physical cores. The machine has 16 GB of memory. It ran Fedora 15 with a 2.6.38

kernel. Our guest environment uses two virtual cores that run a BusyBox environment

based on Linux kernel 2.6.38. The virtual cores are mapped one-to-one with unoccupied

physical cores. This machine does not have an HTM implementation.

Implementation size: Our implementation of RTM emulation is an optional, compile-

time selectable extension to Palacios, and we made an effort to limit changes to the core

of Palacios itself. There were two major areas where we had to modify the Palacios core,

namely (1) handling of exceptions and interrupts, some of which are needed to drive

the RTME, and (2) page fault handling, allowing some page faults to drive the MIME.

These changes and the entirety of the extension code comprise 1300 lines of C. Given the

size and very clear changes to the Palacios codebase, it should be possible to port our

implementation to other VMMs.

Test cases: To test the correctness of our implementation, we needed a test suite which

would present the implementation with various behaviors, and an ability to test the out-

come. GCC 4.7 includes support for compiling the Haswell transactional instructions,

but the test cases shipped with it only evaluate the behavior of software transactional

memory. We found we had to write our own test cases, which test the following sce-
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narios: (1) transaction calls XABORT after making no changes to memory, (2) transaction

calls XABORT after having “written” to memory, (3) transaction writes memory with

an immediate value, (4) transaction reads memory into a register, (5) transaction writes

a register to memory, (6) transaction reads and writes the same memory location, (7)

transaction thread writes to distinct, addresses, and (8) transaction and non-transactional

thread write to overlapping addresses. The test cases are written using pthreads. After

the threads set their affinity for distinct virtual cores, and synchronize, they then repeat

their activity. Hence, over time, various possible orderings of execution are seen, as are

aborts due to external causes (e.g., interrupts). These test cases form a “correctness test”

of our implementation, which it passes.

Performance: The MIME-based execution model must obviously be slower than normal

execution under the VMM or at native speeds. To quantify this slowdown over native, we

ran an additional microbenchmark on our system and on a new, first-generation Haswell

machine, an HP Proliant DL320e with a single-socket, quad-core Intel Xeon E3-1720v3

and 8GB RAM.

This benchmark consists of one thread pinned to a single core that enters a transaction,

writes to a memory location, and then exits the transaction. The benchmark measures the

time spent running 10 such transactions, and is intended to typify a common transactional

code path. We averaged this runtime over 100 runs. To ensure accurate timing for RTM

emulation, we used the TSC in passthrough mode to measure elapsed time. We found

that on native, the average time spent running the 10 transactions was 2.57usec, while

under MIME, the average time was 853.88usec.

Future work on transactional memory emulation will include comparing performance

of multi-threaded applications, more complicated transational semantics including trans-
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action restarts, and testing transactions that the hardware would not be able to support,

such as those that exceed architectural limits.

We also ran our test cases on Intel’s Software Development Emulator (SDE), where

we found a slowdown on the order of 90,000×—our RTME runs approximately 60 times

faster during a transaction. Moreover, the SDE’s overhead occurs all the time, as one

might expect for full emulation. There is a caveat in these numbers, however. The cache

model we are using in our RTME is the null model (no aborts due to hardware resource

limits), while Intel’s is not. That said, we found that the average MIME “step” – the

average time to process a read or write – took on the order of 7,000 cycles. This means

that we would need to use a cache emulator that took >400,000 cycles per read or write

in order for our system to slow down to speeds of emulation.

A.4 Conclusions

We developed an implementation of Intel’s HTM extensions in the context of a VMM us-

ing MIME, a novel page-flipping technique. Our implementation allows the programmer

to write code with TSX instructions, allows for bullet-proofing of code for various hard-

ware architectures, as well as allowing tight control of the environment under which a

transaction is occurring. We are able to achieve this with limited instruction decoding,

and at speeds approximately 60 times faster than under emulation.
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Appendix B

VMM/Architecture simulator integration

In this appendix I describe work that I did in creating a service for automated transla-

tion between checkpoints of GEM5 and Palacios virtual machines. This work was done

in the Summer of 2014. GEM5 [13] is an architecture simulator, capable of emulating

a processor down to its microarchitecture, which is very useful for architecture research.

However, due to its detail and complexity, it is also extremely slow, in some cases 3 orders

of magnitude slower than native execution. By providing a mechanism for translation of

checkpoints, researchers would have the opportunity to transition to detailed GEM5 state

only when necessary, to observe detailed architectural behavior, and remain in the much

faster virtualized state for the rest of execution. Similar approaches have been recently

researched and considered directly inside the GEM5 simulator [107]. The following is the

contents of the README we have provided as part of the snapshot of our tool, GEM5

code state, and Palacios code state.

Previous work for this project was done as a part of Northwestern University class

EECS 441: Resource Virtualization taught by Prof Peter A. Dinda, and completed by Mad-

hav Suresh, John Rula, and George Tziantzioulis. I am thankful to them for their initial
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efforts, as well as guidance that was provided as I continued work on this idea.

What follows is the contents of the README file that is included with a snapshot of

the code necessary for checkpoint translation, as well as snapshots of both Palacios and

Gem5 codebases in the states that the translation counts on. The translation depends on

the behavior to be such as it is in these snapshots, which includes accounting for any bugs

that may exist in either or both codebases.

README This directory contains a snapshot of code for doing migration of virtual ma-

chines between Palacios and GEM5. This is an involved process and our tools are a proof

of concept, hence the release of this as a snapshot. Minor changes to the Palacios codebase

have also been commit and pushed to the devel branch. No changes to GEM5 are needed,

but we include a copy of the GEM5 tree we use for testing just in case. The migration tools

rely on the relevant bugs/features in this version of GEM5 and may not work with any

other.

By "migration of virtual machines between Palacios and GEM5", we mean the follow-

ing:

1. Creation of a pair of VMs based on identical images, one for GEM5, one for Palacios.

2. Transformation of a Palacios checkpoint into a GEM5 checkpoint. This allows you

to checkpoint a VM in Palacios and resume it in GEM5.

3. Transformation of a GEM5 checkpoint into a Palacios checkpoint. This allows you

to checkpoint a VM in GEM5 and resume it in Palacios.

The set of devices that can be transformed is limited (generally to a subset of devices used

in GEM5 (PIC, PIT, APIC, IOAPIC, SERIAL, ...).
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B.0.1 Files

The files included as part of the tool snapshot are:

• arch-snapshot.tgz

– This contains the migration tools and numerous working examples ("pairs" of

Palacios VMs and GEM5 VMs)

– Migration tools are compact, the working examples are not

– This also includes a snapshot of Palacios configured and built as appropriate

• gem5-snapshot.tgz

– Snapshot of the version of GEM5 and its build that we are using

B.0.2 Documentation for checkpointing translation process

Requirements:

• Palacios devel commit 76fea3b8a640b9b1a509b6ad20a2868ced5e5548

• Gem5 changeset 8592:30a97c4198df

• Gem5/Palacios kernel pair (must have a serial stream console)

Checkpointing and restoring virtual machines is accomplished via the following steps:

1. Make Gem5 skeleton (create m5.p pickle file)

cd /path/to/gem5-base

source ENV

cd gem5
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./build/X86_FS/m5.opt -d ./m5out/ configs/example/fs.py --kernel="pair1"

nc localhost 3456

m5 checkpoint

cp m5out/cpt.CURRENT/m5.cpt /path/to/xlation/dir

mv m5out/cpt.CURRENT m5out/cpt.1

cd /path/to/xlation/dir

./m5parse.py m5.cpt m5.p

2. Palacios Boot (create binary memory image and text checkpoint)

v3_init

export PATH=/path/to/palacios/linux_usr:$PATH

v3_create -b /path/to/your-kernel-pair-config.xml go

v3_launch /dev/v3-vmX

v3_stream /dev/v3-vmX streamY

(optional) make some fs changes

v3_pause /dev/v3-vmX

v3_guest_mem_access /dev/v3-vmX read 0 MEM_SIZE_BYTES > /path/to/mem_save

v3_save /dev/v3-vmX KEYED_STREAM textfile:/path/to/cpt 1

3. Pal→ Gem Translation (create p25out/m5.cpt file)

cp -r /path/to/cpt /path/to/xlation/tpair

./p2m.py -v > /path/to/p2m.output

4. Restore in Gem5 (create m5.cpt checkpoint and gemmem memory image)
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cp p25out/m5.cpt /path/to/gem5/m5out/cpt.1/

cp /path/to/mem_save /path/to/gem5/m5out/cpt.1/system.physmem.physmem

cd /path/to/m5-base

source ENV

cd gem5

./build/X86_FS/m5.opt -d ./m5out/ configs/example/fs.py --kernel="pair1"

-r 1

nc localhost 3456

m5 checkpoint

mv m5out/cpt.NEW /path/to/gem5_save

zcat /path/to/gem5_save/system.physmem.physmem >

/path/to/xlation/dir/gemmem

5. Gem→ Pal Translation (make tmp/* palacios checkpoint files)

cp /path/to/gem5_save/m5.cpt /path/to/xlation/dir

mkdir tmp

./m2p.py -v > /path/to/m2p.output

6. Restore in Palacios

v3_create -b /path/to/your-kernel-pair-config.xml go

v3_guest_mem_access /dev/v3-vmZ write 0 MEM_SIZE_BYTES <

/path/to/xlation/dir/gemmem

cp /path/to/xlation/dir/tmp/* /path/to/xlation/dir/tpair

v3_load /dev/v3-vmZ KEYED_STREAM textfile:/path/to/xlation/dir/tpair 1

v3_launch /dev/v3-vmZ
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v3_stream /dev/v3-vmZ streamY

All files are available via http://v3vee.org/palacios/

http://v3vee.org/palacios/

